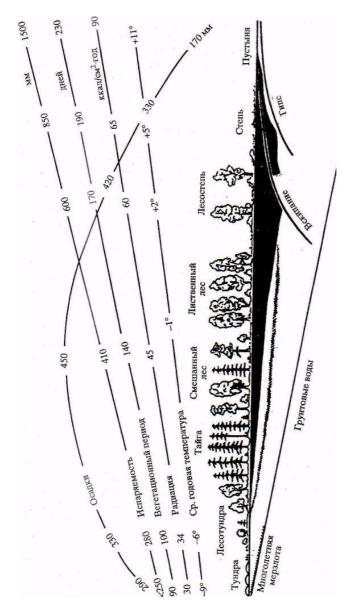
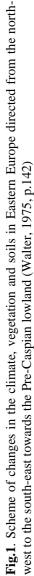
SOIL-AGROMELIORATIVE REGIONALIZATION AS AN INFORMATION BASE FOR THE SOIL COVER INVENTORY OF AGRICULTURAL LANDS IN RUSSIA

© 2014 г. D. S. Bulgakov, V. A. Rozhkov, I. I. Karmanov


V. V. Dokuchaev Soil Science Institute, 119017 Moscow, Pyzhevskii 7, bld. 2 e-mail: bulgakov@agro.geonet.ru


Under consideration is a version of the regionalization revised with the aim to renew taxons, to give a new interpretation of farming systems and to specify the qualitative and quantitative characteristics of the soil cover in agricultural areas. It is of great interest from the historical viewpoint, permitting to study the stages in the development of the purposeful regionalization. The materials presented in this paper may be useful for elaborating a new specialized regionalization using the modern GIS-technologies for the further development of agriculture in the nearest future.

Keywords: soil-agromeliorative regionalization, landscape-soilenvironmental and climatic characteristics of the soil cover, soilagromeliorative regions, claster analysis.

The territory of Russia reveals a great diversity of natural (soilclimatic) conditions, which determine the soil formation processes, properties and fertility of soils, their resistance to different kinds of degradation and the possible efficient use of the soil cover for solving regional tasks in the further development of agriculture.

It is known that the rational use of the country's land resources is possible only when the state of soils and soil cover has been thoroughly studied. The anthropogenic effects on soils and the soil cover are varying in different natural zones and their peculiar features should be taken into complete account in agricultural management. This is clearly reflected in different kinds of land regionalization. The scientificallygrounded elaboration of a new purposeful regionalization using modern GIS-technologies may be realized as based upon the available regionalization of the same type. In view of this, the given paper is aimed to present a comprehensive analysis of different regionalization kinds and the soil-agromeliorative regionalization in particular.

In the XIX century V.V. Dokuchaev (1883) suggested the regionalization of the territory within the boundaries of chernozem distribution in European Russia and later on he offered the law of natural zonality, thus indicating a close interaction between the climate, soils, vegetation and animal kingdom (V.V. Dokuchaev, 1899). The latest studies in soil science served as evidence of Dokuchaev's idea (Fig.1).

This fact that is rather evident not only for Russia and soil science has been presented in a series of publications about the country's regionalization for different purposes appeared in the USSR in the mid-XX century. Among them are geobotanical [6, 5, 25, 47], geomorphological [7, 2], hydrological [42], soil-geographical [12, 10, 11], natural-historical [15], soil-geographical regionalization [32], physical-geographical [19, 20, 4], agroclimatic [45, 46], natural-agricultural [34, 35], natural [27, 36], climatic [40, 23, 1], landscape [26, 43, 44], forest [22, 24], natural-meliorative [49, 16, 17], etc.

The above kinds of regionalization have the purpose to provide the agriculture with the natural information base and to take into consideration regional peculiar features of the agricultural production. Of great interest is the natural-agricultural regionalization of the USSR elaborated in the 1970s. It distinguishes 14 zones and 47 provinces at the plain territory including 11 zones and 36 provinces in Russia; they were identified by using 6 indices such as the continentality coefficient, the lower and upper boundaries of effective temperatures, moisture coefficient and the bioclimatic index.

The results of claster analysis permitted to elaborate a quantitative conception about the interaction between these natural zones and indices characterizing them in space [37].

As seen from Fig. 2, the level of natural similarity or difference between the zones is quite different, thus permitting to distinguish or not distinguish them. For example, there is no necessity to recognize 8 semi-desert and 9 desert zones, whose level of natural-agricultural similarity makes up 94%. The similarity level between 3–5 and 6–7 clasters doesn't exceed 58%, or there is the same similarity between 8– 12 claster and the zone 13. In the other words, the lower is the similarity level the greater is the area of regionalization to be at another taxonomic level (region, belt, etc.). In general, such an analysis serves as an addition to the concept of the territory differentiation and helps to make

```
      %/ЗОНЫ 1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14

      94
      |
      |
      |
      |
      |
      |
      |
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

Fig. 2. Dendrogram of natural-agricultural zones.

optimal decisions. It seemed to be a basis for a number of purposeful regionalization.

Today, in the period of transition to the market relations in the country the distribution of soil-agromeliorative resources in several regions resulted from estimating their natural potential by means of different regionalization kinds remains in the interests of the State. In view of this, it is very important to mention the soil-agromeliorative regionalization of arable lands in the USSR elaborated in the 1980s of the XX century. However, after disintegration of the USSR and changes in political and social-economic conditions in the Russian Federation it became necessary to revise the above regionalization with the due account of new boundaries and areas occupied by arable lands in Russia. It was specified by using the information on soil-geographical and natural-agricultural regionalization of the USSR in which some contours of agricultural areas have been generalized [48].

The complex soil-agromelorative regionalization of arable lands in the USSR [37] included soil-agromeliorative regions provided with detail qualitative and quantitative characteristics of the soil cover at the territory of agricultural areas and the data about agricultural management practices according to their effects on agro-ecosystems [50].

The same taxonomic units remained in the revised soilagromeliorative regionalization – soil-agromeliorative zone and soilagromeliorative region in plain and the mountain area and mountain region in the mountains. The zones are distinguished according to the heat and moisture balance, regions – according to temperature differences (in meridional direction), moisture conditions and climate continentality (in latitudinal direction). As distinct from regionalization of the territory in the USSR a new version of this regionalization contains 9 soil-agromeliorative zones, one group of mountain areas, 23 regions in plain and 3 regions in the mountains. The information was also taken into consideration to show the basic adverse natural-anthropogenic processes of soil degradation (Fig.3).

Every region is provided with the characteristics of the areas occupied by arable lands including irrigated and drained ones, the soil cover and a share of each soil in it, the structure of areas under crops and a share of areas occupied by a definite crop, the data about soil supply with elements so vital for cultural crop nutrition including nitrogen, phosphorus, potassium and the required rates of organic fertilizers for self-supporting humus balance, adaptive-landscape farming systems (as distinct from zonal ones) in the region with account of management practices (for instance, forest-steppe, agro-forestameliorative, water-accumulating, irrigational tillage, mold-boarding plowing at a different depth as well as the measures to decrease the soil acidity, to accumulate the humus in soil, to protect against erosion or excessive compaction of soil). All these data are shown in digitized form (Table 1, 2). Moreover, there are data about 11 agro-climatic indices including the heat and water supply, severe winters, the climate continentality for one or a group of regions.

The revised version of the given regionalization reflects the interaction between agricultural and agro–ameliorative practices and may serve as a historical basis for forecasting the changes in great administrative regions (Fig.4). The Table demonstrates the regionalization taxons, but some of them need to be additionally discussed.

The zone of tundra arctic soils embraces the Euro-Asian territory with the temperate continental climate which is excessively humid and predominated by the permafrost and cryogenic processes. The agriculture is local by nature and meets only the requirements of native people using close hot-houses, artificial thermoregulation and the prolonged light day.

The northern and middle taiga zone is the zone of differenttextured gley podzolic and frozen taiga soils. With respect to soil amelioration this zone is subdivided into 4 specific regions; the agriculture takes place only in the second region situated in Eastern Europe.

Table 1.	H	. The	e landscape-soil-agronomical	l characteristics of the	of the territory i	n Russia ar	nd measur	es recommended for soil	ii
impro	ven	len							

improvement												
S	Soil-	Soils, indices, the	Area	Struct	ure of a	ureas u	inder cr	Area Structure of areas under crops, %	Supp	Supply degree	ee	Recommended measures,
agrom	agromeliorative	share in %	under	under cere-	tilled fal- per- annual	fal-	per-	annual	Z	പ	K	indices, share in %
	region, zone		crops	als		low	low ennial grass	grass				
region,			%				grass	and				
								legume				
Euroasia	Euroasian, tundra	$A_5 \Pi B_3 (\Pi o + \Gamma)_2$	ĩ	1	1	1	J	Ĩ	1	Ĩ	1	T ₁₀
European, taiga		$\Pi_8 (\Pi 6 + A)_2$	0.9	÷	I	E	Ţ	Ĩ	_	1.2	e	3 Ок ₁ Тсг ₈ Ки ₆ Кд ₄ Гтк ₁₀
												Aaka ₁₀
West Siberian,		$\Pi_8 (\Pi 6 + A)_2$	0.1	÷	l	I	ţ	Ĩ	-1	1.2	2	Ок ₁ Ки ₇ Кд ₂ Тсг ₁₀ Гтка ₁₀
taiga												Афка ₁₀
East Sib	erian, fro-	East Siberian, fro- IIIn ₅ Дr ₃ A ₂ II?	0.1	+	1	1	J	Ĩ	Ч	1.2	2.3	2.3 Тм4T сг ₆ Ок ₂ Ки ₃ Кд4 Гтк ₁₀
zen taiga		.00										Афка ₁₀
Okhotsk-		$A_4 \ \mu_3 Mr_2 \Pi?$	0.1	+	Ì	1	J	1	Ч	1.2	2	$Tm_2Tcr_4Ok_3Kn_4\Gamma rk_{10}$
Kamchat	Kamchatka, forest	10 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -										Adjkm ₁₀
taiga												
West Russian,	an,	Пд ₆ Пб ₂ (Дг+ Дк+ 0.2	0.2	48	14	I	30	8	6	7	С	Оддр ₃ Ки ₇ Кд ₃ Гнг ₇ Гс ₃
taiga forest		$A)_2$	0.1*									Афка ₁₀ Ам ₃ Эп ₂ Мк
Central t	Central taiga forest Пд ₉ Пб ₁	Пд ₉ Пб ₁	10.4	50	16	e	27	4	1.2	Η	1.2	1.2 Оддр ₁ Ки ₃ Кд ₂ Гтн ₇ Гс ₂
	1	2	0.5*									Афка ₁₀ Ам ₂ Эп ₃
Pre-Ural	Pre-Ural taiga for- Пд ₉ Пб ₁	Пд ₉ Пб ₁	4.7	59	15	9	15	S	1.2	1.2	1.2	1.2 Вс ₁ Ки ₈ Кд ₂ Гтн ₈ Афеа ₈
est					1							Эпо2
West Siberian,	erian,	Пд ₉ Пб ₁	<u>1.5</u>	60	14	9	6	5			5	2 Ок ₂ Оам ₁ Ки ₇ Кд ₂ Гтн ₈ Аф-
taiga forest	est		0.4*									ка ₈ Эп ₂
Middle Siberian		Пд ₁₀ Пб?	1.0	54	15	Ţ		Ī	-	-	2.3	2.3 Ок ₁ Ки ₈ Гтн ₁₀ Аф ₉ Эп ₃
taiga forest			0.1*									

No.	Soil-	Soils, indices, the	Area	Struct	ure of a	treas u	nder cr	Structure of areas under crops, %	Supp	Supply degree	ree	Recommended measures,
Index	agromeliorative	share in %	under	cere-	tilled	fal-	per-	ammal	z	Ч	K	indices, share in %
of	region, zone		crops	als		low	ennial	grass				- Contraction of the contraction
region,			%				grass					
ZUIIC								legume				
11(3e)	Far East, meadow-	$Л6_4 Л \mathbf{u}_2 Л \mathbf{r}_2$	<u>1.5</u>	45	32	3	I	Ì	Ч	-	6	Ок ₁ Оам1 Ки ₆ Гтн ₈ Афак ₈
00 92	taiga forest	$(\Pi r + A)_2$	0.5*									Эпо2
12(4a)	Central Chernozem JJ ₃ UB ₃ Ur ₃ Un ₁		20.8	56	27	4	5	8	'n	1.2	6	$Bлс_6Идм+д_1 Ku_2 \Gamma rH_6$
	forest steppe		0.4**									Афк ₆ Эпо ₅
13(46)	Volga forest steppe $\Pi_3 H_{B4} H_T_3$		<u>9.2</u>	63	16	5	5	6	3.4	1.2	2.3	2.3 BIIC6HAM+A1KN3 LTH8
	protocols or lasering		0.1**					ļ			3	Афк ₆ Эпо ₄
14(4B)	West Siberian,	$ {\rm M}_3 \ {\rm H}_{\rm B_4} \ {\rm H}_{\rm M_2} \ {\rm H}_{\rm MCH_1} $	<u>9.6</u>	60	13	7	11	5	2.3		3.4	3.4 Вск ₇ Идм+м ₁ Ки ₂ Гтн ₆
	meadow-steppe	Langeville (Langeville)	0.1	Const Distance	1				100		3	$A \Phi_6$
15(4r)	Pre-Altai forest	$\mathrm{M_2}\mathrm{H}_\mathrm{B_7}\mathrm{H}_\mathrm{I}$	3.7	60	8	E		Ï,	2.3	1.2	3.4	3.4 Bck ₈ H $_{\rm M}$ + $_{\rm H_1}$ Γ TH ₇
1	steppe											Аф ₈ Эп₄Эв5
16(4丸)	Middle Siberian,	$\Pi_4 \operatorname{HB}_4 (\operatorname{H}_{\Pi} + \operatorname{H}_K)_2$	2.5	50	10	E	ļ,	Ĩ	2.3	-	2	Вск ₁₀ Идм+д ₁ Ки ₄ Гтн ₈
	forest steppe		0.4**									$A\varphi_8 \Im m_5$
17(5a)	Pre-Caucasian,	40K5 4KoK2	8.1			1	J	1	2.3	ŝ	-	$B\pi_8 H$ дм+ π_1 Γ тн $_8$
	steppe	$(H_B+H_{\Pi}+J_{\Pi})_2$	0.1**									Афм,Эпв,Сгзм Зв
18(56)	Central steppe	404 41054cH1	8.6	55	24	8	9	r-	2.3	Ч	3.4	$B\pi_{10} M M + \pi_1 \Gamma T H_8 A \varphi M_8$
			0.1**									Jill8 4 C3MF
19(5B)	Trans-Volga,		6.7	57	26	'n	Ś	6	2.3	Ч	ъ	Влс ₁₀ Идм+д ₁ Гтк9 Афк9
1	steppe	$(\text{HcH+KT})_2$	0.3**									JII04 CM3M1
20(5r)	West-Siberian,	$\mathrm{Vo}_4 \mathrm{Vio}_4$	7.8	70	16	5	11	ω	2.3	1.2	3.4	3.4 Вс ₉ Идм+д ₁ Гтк ₈ Аф ₈
	steppe	$(\text{HcH}+\text{H}_{1}\text{ICH})_{2}$	0.2**									$\Im m_2 \Im \phi C M_2$
21(5д)	Middle-and East	Чо ₄ Чю ₄ (Чл+Кт) ₂	2.6	75	8	8	l,	ľ,	2.3	1.2	2	$Bc_9 H д m^+ д_1 \ \Gamma \tau H_8 A \varphi_8 \ \exists \pi o_4$
	Siberian, steppe											

se Recommended measures,	K indices, share in %				3 Влк ₁₀ Иол ₁ Гтк ₈ Аф ₈	BII02BB2	2.3 $Bck_{10}Hon_1 \Gamma tk_8 A\varphi_8$	$\Im m_3 3 \varphi_2 C m_2$	3 Ио+од ₁₀ Гкн ₈ Афм ₅ Эи ₂ Зв ₆		3 Ио+од ₉ Гкт ₈ Афм ₄ Эпо ₄	3 _{B2} 311	 Окдй₁Ки₉Гкв₉ Афм₉ Эпо₉ 		
degre	д						1.2		1.2		-		ĩ		
Supply	z				-		1.2 1.2		<u> </u>				1		
% sdo.	under cere- tilled fal- per- annual N P K	low ennial grass	and	legume	1		J		ľ,		Ē		I		
nder cr	per-	ennial	grass		I		J				IJ		ļ		
treas u	fal-	low			1		10		6		E		I		
ure of a	tilled				5		4		б		Ľ		I		
Struct	cere-	als			65		72		69		L		I		
Area	under	crops als	%		12.6 65	0.4**	<u>1.1</u> 72	0.3**	0.5**		0.1**		0.06		
Soils, indices, the Area Structure of areas under crops, % Supply degree	share in %				К ₈ (Ксн+Кл) ₂	22			K ₄ Ксн ₃ Кл ₂ А ₁	All Tables and O	$C6_2 C 6 c H_5 П n_2$		$ m K_{7} (JIr+A+A6)_{3}$		
Soil-	9	region, zone			22(6a) East Siberian, dry K ₈ (KcH+KII) ₂	steppe	23(66) West Siberian, dry K ₇ (KcH+KII) ₃	steppe	South-European	semi-desert zone	Pre-Caspian desert C62 C6cH5 IIn2	zone	Pre-Caucasian	subtropical wet-	forest zone
No.	Index	of	region,	zone	22(6a)	8	23(66)	8	5		8		6		

Climate	continen-	tality	after	Ivanov				71-178		110-175		1.0-1.33 166-240		190-300	10000000 10000000 10000000000000000000	108-196			102-160	145-170		165-195	
	Ivanov's	moisture	coeffi-	cient				1.33		1.33		1.0 - 1.33		0.55-1.33		1.0-1.33 108-196			1.0-1.33	1.0 - 1.33		1.0 - 1.33	
Water supply	of produc-	ure in 1 m	the vege-	tation period, mm	at the end			No information		200		200		130-200 0.55-1.33 190-300		200			150–200 1.0–1.33 102–160	175-200		150-200	
Water	Reserves of produc-	precipita- tive moisture in 1 m	of soil for the vege-	54 - 52	at the	begin-	ning	No info	-	200		200		150-200		200			175-200	150-200		150-200	
6	Amual	precipita-	tion, mm	t				-634 -1 $40-85$ $200-400$		-10 -24 55-95 400-700		-68 45-95 300-500		-12 30-95 50-500		1600-	1000		-211 -03 20-45 550-800 175-200	-817 -14 50-80 500-800 150-200 175-200 1.0-1.33 145-170		-25 50-70 500-650 150-200 150-200 1.0-1.33 165-195	
sty	Snow	cover	thick-	ness,	CM			40-85		55-95		45-95		30-95		60-	100		20-45	50-80		50-70	
Winter severety	month,	-			soil at	depth	0.2 m	-1	10	-24		-68		-12	25	-27 60-			-03	-14		-25	
Wint	the cold month,	P°C			air			-634			16	-20		Ĩ,		-10	-25		-211	-817		-10	-17
þ	Period	dura-	tion	with t ^o	of air	>10°C		0-50		150- 40-112		36-113		150-32-100		30-80			103-163	100 -	150	105-	125
Heat supply)°C				soil at	a	depth 0.2 m	-0	400	150-	1./00	150-	1750	150-	1500	150-	1150		1650 - 2800	1650-	2600		2350
Heat	$\operatorname{sum} t > 10^{\circ} \mathrm{C}$				air			0-000		400-1650		400-1700		400-1500		400-1200			1600-2550	1600-2400		1500-2200	
Index Soil- Heat supply Winter severety	agromeliorative	region, zone						Euroasian tundra	17	European taiga	1	West-Siberian	taiga	East-Sibenan fro-	zen taiga	Okhotsk-	Kamchatka forest	taiga	West-Russian taiga 1600–2550 1650– forest 2800	Central taiga forest 1600-2400 1650-		Pre-Ural taiga	forest
Index								1		2(2a)	88 85	3(26)	1	4(2B)		5(2r)			6(3a)	7(36)		8(3 ^B)	

Climate	ö	tality	after	Ivanov				170-205		210-240		Myc-	сонный	160-190		180-194		190-216		194-210		215-240		160-180	
	Ivanov's	moisture	coeffi-	cient				1.0-1.33		0.77-1.00		1.0 - 1.33		0.77-1.15		0.77-1.00		0.66-1.00		0.66-1.15		0.66-1.15		0.53-1.00	
Water supply	of produc-	ure in 1 m	the vege-	riod, mm	at the end			-46 60-90 400-500 150-200 150-200 1.0-1.33 170-205		-7 30-50 300-400 150-175 150-175 0.77-1.00 210-240		200		-14 35-50 400-600 150-175 125-150 0.77-1.15 160-190		-25 40-80 400-600 125-175 125-150 0.77-1.00 180-194		-47 40-60 300-400 125-175 75-115 0.66-1.00 190-216		-46 45- 400-800 125-175 125-150 0.66-1.15 194-210		-57 30-60 300-500 125-150 100-150 0.66-1.15 215-240		-16 $ +04 $ 10-60 $ $ 400-800 $ $ 150-175 $ $ 110-150 $ $ 0.53-1.00 $ $ 160-180	
Water	Reserves of produc-	tive moisture in 1 m	of soil for the vege-	tation period, mm	at the	begin-	ning	150-200		150-175		200		150-175		125-175		125-175		125-175		125-150		150-175	
	Annual	precipita-	tion, mm	6				400-500		300-400		-38 30-90 500-1000		400-600		400-600		300-400		400-800		300-500		400-800	
sty	Snow	cover	thick-	ness,	CM			06-09		30-50		30-90		35-50		40-80		40-60		45-	100	30-60		10 - 60	
Winter severety	month,	7.)			soil at	depth	0.2 m	-46		7	10	-38		-14		-25		-47		-46		-57		+04	
Wint	the cold month,	PC			air			-16	-18	-21	-27	-14	-22	-8	-13	–13	-16	-17	-20	-17	-19	-18	-19	-16	
	Period	dura-	tion	with t ^o	of air	>10°C		100 -	122	90-104		76-130		132 -	163	106 -	149	110-	137	102 -	129	93-110		166-	190
Heat supply	D°C				soil at	g	depth 0.2 m	1500-	1950	1350-	1900	850-	2800	2100-	3100	1650-	2700	1850-	2450	1650-	2150	1350-	1750	3100-	4050
Heat	$\operatorname{sum} t > 10^{\circ} \mathrm{C}$				air			1500-1850 1500-		1400-1600		1000-2600		2000-2800		1600-2500		1800-2250 1850-		1600-2050		1400-1700		2800-3600	
Soil-	agromeliorative	region, zone						West-Siberian	taiga forest	Middle Siberian	taiga forest	1(3e) Far East meadow-	taiga forest	2(4a) Central Chernozem 2000-2800	forest steppe	3(46) Volga forest steppe 1600–2500		14(4b) West-Siberian	meadow steppe	15(4r) Pre-Altai forest	steppe	l 6(4g) Middle Siberian	forest steppe	17(5a) Pre-Caucasian	steppe
Index								9(3r)		10(Зд)		11(3e)	8	12(4a)		13(46)		14(4B)	1	15(4r)	_	16(4д)		17(5a)	8

Soil-	Heat supply	ply		Winte		ty	,	Water	Water supply		Climate
ŝ	sum t >10°C		Period	the cold month,		Snow	Annual		Reserves of produc-	Ivanov's continen-	continen-
			dura-	f°C		cover	precipita-		tive moisture in 1 m	moisture	tality
			tion		and a	thick-		0	the vege-	coeffi-	after
			with t ^o			ness,		tation per	tation period, mm	cient	Ivanov
	air s	soil at	of air	air	soil at	CM		at the	at the end	-	
		a	>10°C		depth			begin-			
	00	depth 0.2 m			0.2 m			ning			
240	2400-3300 2600-	600-	145-	-613	-25	15-40	-613 -25 $15-40$ $350-500$ $100-150$	100-150	80-115	80-115 0.44-0.77 165-190	165-190
0000		3700	179	-13 16	8 1	30_50	13 16 1 8 30 50 300 400 100 135	100-125	80_100	0.40-0.66 100-200	100-200
200		3100	156	01)))		AT 001		00.0	
2000	2000-2400 2100-	100-	126-	-19	9	30-45	200-350	100-150	-69 30-45 200-350 100-150 75-125 0.44-0.77 200-225	0.44-0.77	200-225
	. 1	2600	143								
1400	1400-2000 1	1350- 5	95-120	-19	-8	15-50	-8 15-50 200-500 100-150	100-150	80-120	0.40-0.77 210-290	210-290
	. 4	2200		-30	14						
2600	2600-3600 2	2850-	142 -	-7	-00	10-25	-07 10-25 250-350	75-125	75-100	0.33-0.55 175-220	175-220
	7	4050	195	-18							
2200	2200-2800 2	2350-	135-	-15		20-30	-6 20-30 250-350	70-110	40-80	0.33-0.44 206-230	206-230
		3100	155	-19	-13						
220(2200-3600 2	2350-	136-	-418	_2	10-25	-2 10-25 100-300	50 - 100	25-75	0.12-0.33 180-250	180-250
	7	4050	188	ton former	-12		A CONTRACTOR OF A CONTRACTOR	1000 Autore 0.	100000000 - 100000000 - 100000000000000		
3000	3000-4000 3300-	300-	160-	-513	-38	10-20	-513 -38 10-20 75-175	4090	10-35	10-35 0.12-0.22 206-260	206-260
	7	4500	200		1		Contraction of the second	and the second s			1000 CO.
400	4000-4400 4	4500-	200-	+71	+8+1	10-15	+71 +8+1 10–15 800–3200 150–200		130-200	1.00-1.33	12–13
	- 4 1	5000	240								

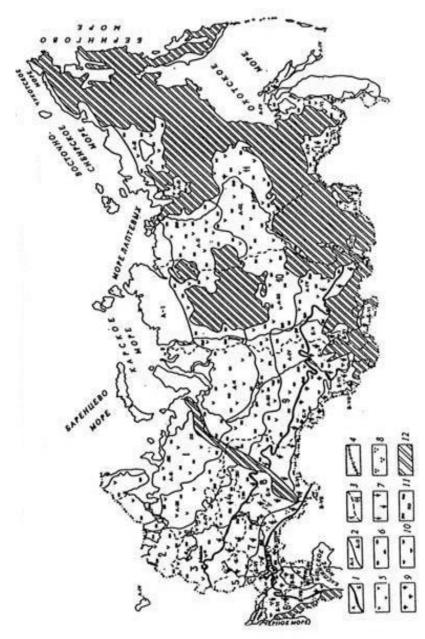


Fig. 3. Distribution scheme of basic adverse degradation processes limiting the soil fertility in agricultural areas of Russia (State program of monitoring..., 1991). Boundaries: 1 – soil-ecological belts; 2 – soil-ecological zones; 3 – economic regions; 4 – State boundary. The land category according to properties and processes limiting the soil fertility: 5 – acidic, 6 – excessively wet, 7 – eroded, 8 – deflated, 9 – saline, 10 – saline solonetzic, 11 – alluvial (with different adverse properties), 12 – mountain territories predominated by erosion processes.

2a. The European taiga region is characterized by the temperate continental excessively humid climate, where the heat amount is rather low; the winter is severe and rich in snow. The agricultural areas are used for cultivating the early-maturing crops. Adaptive-landscape farming systems should be oriented to soil-agromeliorative measures including drainage, thermoregulation, decreasing the soil acidity, humus accumulation, nitrogen-phosphorus fertilization, flood regulation.

2b. The West-Siberian swampy-taiga region differs from that in Eastern Europe by a higher degree of the climate continentality and more severe winters. The areas under crops occupy small territories of podzolic and alluvial soils, where the summer quickly growing crops including cereals are cultivated.

The farming systems are the same like those used in European region. 2c. The East-Siberian frozen-taiga region is characterized by the sharply expressed continental climate (in some places it is semidried and semi-humid); the heat amount is rather low, the winters are very cold. The arable lands occupy small areas of alluvial, soddy-gley and pale soils. The summer quickly growing frost-resistant crops are cultivated. In the southern part of this region the peculiar natural post-thermokarsts – alases are used as agricultural areas.

2d. The Okhotsk-Kamchatka forest taiga region is situated within the zone of coastal humid climate, but the heat amount is insufficient, the winter is rich in snow and very cold. The arable lands occupy small areas on alluvial podzolic and soddy-gley soils. The farming systems are the same as those mentioned in the other regions.

The south-taiga zone of soddy-podzolic, brown forest, meadow, soddy-carbonate and soddy-gley soils includes 6 soil-agromeliorative regions, where the agriculture is sufficiently developed especially in European part of this zone.

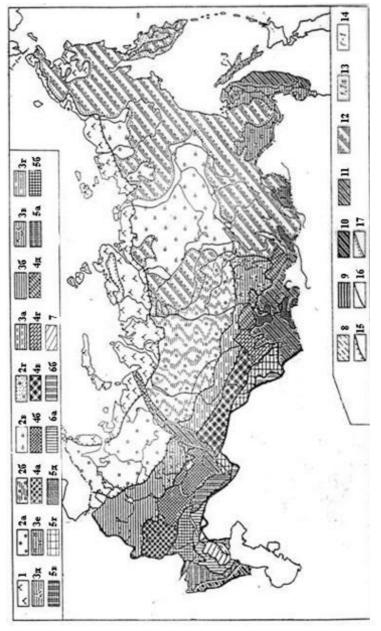


Fig.4. The complex soil-agromeliorative regionalization of Russia.

3a. The taiga-forest region in Western Russia (Kaliningrad region); it is situated within the zone of the coastal climate provided with the sufficient heat amount and soft winter. The arable lands cover the areas of soddy-podzolic (brown podzolic) drained, soddy-carbonate and alluvial soils and make up 0.1/% of the total area under crops in Russia. Among the cultivable crops are winter and summer cereals as well as the fodder crops. To advance the agricultural production, the measures are required to protect the soils against erosion and compaction. The wet soils need to be improved by regulating the water regime and applying the moldboard plowing at a different depth. Besides, it is very important to undertake measures oriented to accumulate the humus in soil.

3b. Central taiga-forest region; it is situated under conditions of the temperate continental climate with the sufficient heat amount and the cold snowy winter. The arable lands occupy soddy-podozlic soils and make up more than 10% of the total agricultural area in Russia. For agricultural purposes the fallows, cultivation of winter and summer cereals are used. With respect to soil amelioration such measures should be undertaken as the water regulation, plowing at a different depth as well as those oriented to decline the acidity, to accumulate the humus, to control against soil erosion and compaction.

3c. The Pre-Ural taiga-forest region; it is characterized by the continental moderately humid climate somewhat provided with the heat and temperate cold winters. The arable lands on soddy-podzolic soils occupy about 5% of the total area in this region; in the structure of areas under crops the cereals are dominant with using fallows to control predominantly against the weeds. As compared to the abovementioned region the same soil-improving measures are required and only the higher rates of organic fertilizers (10–12 t/ha/year) should be applied to accumulate the humus in soil.

3d. The West-Siberian taiga-forest region; it has the more continental climate with insufficient heat and cold winter rich in snow. The arable land occupies 1.5% of the total area on different-textured soddy-podzolic soils. In the structure of areas under crops the summer cereals are dominant occupying 2/3 of the total area in the region. Drainage, moldboard plowing, liming and dolomite application, humus accumulation (8–10 t/ha/year of organic fertilizers), the increased rates of min-

eral fertilizers (nitrogen, phosphorus, potassium), soil protection measures (erosion, compaction) are required to advance the agricultural production.

3e. The Middle-Siberian taiga-forest region; it occupies the territory between the West-Siberian taiga-forest and Ural-North-Siberian mountain regions and reveals the sharply expressed continental semihumid climate with insufficient heat and very cold and severe winter. The agricultural land on soddy-podzolic soils is rather small (1%), predominated by growing of frost-resistant summer crops. Agromeliorative measures are identical to those recommended in the West-Siberian region but the dolomite application and the potassium fertilizers are not required to improve the soils.

3f. The Far East meadow-taiga region; it is situated within the zone of the coastal monsoon humid climate being provided with insufficient heat and the moderately cold winter in the northern part of the region. The agricultural lands occupy 1.5% including the third part of drained area under crops on meadow-brown, meadow-chernozem-like, meadow, soddy-gley and alluvial soils. The spring cereals as well as fodder crops are grown. As a peculiar feature is the cultivation of rice and soy-bean. To improve the insufficient amount of humus, 10-12 t/ha/years of organic fertilizers are required. Among the agro-meliorative measures are drainage, water regulation, liming, mineral fertilization, etc.

The forest-steppe zone of gray forest soils and chernozems including 5 soil-agromeliorative regions.

4a. The Central-Chernozem forest-steppe region; the climate is temperate continental, semi-humid and humid providing with the heat towards the south; in the same direction the winter conditions are changed from the severe winter in the north to the soft winter in the south. The agricultural lands occupy the gray forest and meadow-chernozem soils, leached and typical chernozems. The area under crops accounts for 20% of the total territory in Russia. The major arable crops including fodder ones are cultivated there. The adaptive-landscape farming systems are oriented to the water accumulation, irrigation, plowing at a different depth, improvement of the humus deficiency (5–7 t/ha/year of organic fertilizers) and the phosphorus and

potassium deficit as well as the measures to control against the soil erosion and compaction.

4b. The Volga forest-steppe region; it is characterized by the continental semi-humid climate provided with the heat amount and the winter rich in snow. The arable area occupies 9% of the total territory in Russia including that used under irrigation. The soils reveal the humus deficit, they are provided with nitrogen and potassium but have an insufficient amount of phosphorus.

4c. The West-Siberian meadow-steppe region with meadowchernozems including solonetzic gray forest soils and leaching chernozems. The climate is continental, semi-humid in the south and semidried in the south with the cold and rather snowy winter. The arable lands occupy about 10% of the total territory in the region including those used under irrigation and drainage. The spring cereals are predominantly grown (60% of the area under crops). The farming systems are the same as those used in the Volga region; only the measures to control against the solonetsization are required.

4d. The Pre-Altai forest-steppe region is characterized by the continental climate; it is semi-dried and humid in piedmonts; the winter is cold and snowy. The arable area occupies about 4% of the total territory on leached and typical chernozems as well as the gray forest soils. The cereals are grown occupying 2/3 of the area under crops. Adaptive-landscape farming systems are identical to those used in West-Siberian region but the contour subsoil tillage finds a broad application there. The phosphorus and humus deficit should be compensated (4– 5 t/ha/year of the organic fertilizers).

4e. The Middle-Siberian forest-steppe region: the sharply expressed continental semi-dried climate being humid in piedmonts. The arable areas occupy about 2.5% of the total territory in the region, the soil cover of which is represented by gray forest, meadow-chernozic, soddy-carbonate soils and leached chernozems. The frost-resistant spring cereals are cultivated in $\frac{1}{2}$ of the arable area. The farming systems are identical to those used in the West-Siberian region, but the humus deficiency should be compensated in a higher amount (6–7 t/ha/year of the organic fertilizers). The soils reveal a deficit of phosphorus and partially potassium. The adaptive-landscape farming systems should be soil-protective by nature.

The steppe zone of ordinary, southern, solonetzic, carbonate and meadow chernozems includes 5 regions.

5a. The Pre-Caucasian steppe region: the climate is temperate continental, semi-dried and semi-humid in piedmonts well provided with the heat, the winter is soft with a little amount of snow. The arable areas occupy approximately 8% of the total area including irrigated lands on ordinary, southern and carbonate chernozems. The spring and winter cereals are dominant (55%), the tilled crops occupy 24% of the arable area, fallows are used. The farming systems are directed to keep the soil moisture, to control against the water and wind erosion of soils by subsoil cultivation; to prevent the soil compaction, to increase the humus content (5–6 t/ha/year of the organic fertilizers), to compensate the phosphorus deficiency.

5b. Central steppe region is characterized by the temperate continental, dried and semi-dried climate with the temperate soft and temperate cold winter; it is sufficiently supplied with the heat. The area under crops occupies more than 8.5% of the total territory in the region being widely spread on southern and ordinary chernozems. The winter and spring cereals are predominated in the structure of areas under crops (to 60%); the tilled crops occupy 26% of the total area. The clean fallow is used to keep the soil moisture and to struggle with weeds (without herbicides). The adaptive-landscape farming systems are based upon the water and humus accumulation (6–7 t/ha/year of the organic fertilizers), the prevention of the water erosion and compensation of the phosphorus deficit.

5c. The Trans-Volga steppe region differs from Central region by a higher continentality degree, the dried and semi-dried climate with temperate cold and rather snowy winter. The arable areas on ordinary, southern chernozems and dark-chestnut soils occupy 6.7% of the total territory in the region. This region is considered as one of the important regions in respect of crop cultivation at the territory of 70%; hard wheat cultivars are mainly grown as the most suitable for the food industry. Perennial grasses, tilled crops and the clean fallow occupy the great area as well. The adaptive-landscape farming systems are used to accumulate and keep the soil moisture, to increase the humus content by application of the decomposed manure (3–5 t/ha/year), to protect the soil from the wind erosion and in some places from the water erosion, to prevent the soil compaction as well as solonetzisation and salinization of soils.

5d. The West-Siberian steppe region is situated under conditions of the continental, dried and semi-dried climate with the cold snowy winter and the heat in the sufficient amount. The arable area on ordinary, southern and solonetzic chernozems is used for cultivation of cereals (75%), tilled crops and clean fallows. The adaptive-landscape farming systems are identical to those applied in the Trans-Volga region.

5e. The Middle-and East-Siberian steppe region is characterized by the continental, strongly dried and semi-dried climate with the cold snowy winter and insufficient heat amount. The arable lands occupy insignificant areas (2.6%) on ordinary, southern and meadow chernozems as well as on the dark-chestnut soils. The spring cereals are widely spread (more than 60%). The farming systems are oriented to accumulate the humus, to protect soils and to keep the sufficient balance of nutrient elements due to the increased NPK rates.

The dry-steppe zone of chestnut, solonetzic chestnut and meadow-chestnut soils includes two regions.

6a. The East-European dry-steppe region: the strongly expressed continental and very dried climate with the cold and moderately snowy winter; the heat amount is rather sufficient in this region. This is an agricultural region because the arable lands including irrigated ones occupy 13% of the total territory, being predominantly cultivated by spring and winter cereals (70%) and tilled crops; about 10% of these lands are used as clean fallows. The adaptive-landscape farming systems are based upon the intensive moisture accumulation and irrigation; the measures to prevent the solonetzisation, salinization and compaction of soils are required as well as to prevent the humus deficiency (4–5 t/ha/year) and to increase the content of phosphorus and nitrogen in soil.

6b. The West-Siberian dry steppe region with the continental, very dried climate; the winter is cold and snowy; the region is moderately supplied with the heat. The arable lands occupy approximately 1% of the total territory being situated on chestnut, chestnut solonetzic and meadow soils. The spring cereals make up 70%, tilled crops -3%

and 9-10% of clean fallows. The farming systems are the same as in the abovementioned regions.

The semi-desert zone of light-chestnut, chestnut solonetzic and meadow soils is in coincidence with the territory of the South-European semi-desert soil-agromeliorative region characterizing by the continental dry and semi-dry climate with the moderately cold winter and the sufficient amount of heat. The arable areas including irrigated ones account for 0.5% being cultivated by spring cereals, vegetables and water-melons. The regular irrigation, soil protection measures and those to prevent the soil compaction and salinization are required; the soils need to be improved by organic (4 t/ha/year), phosphorous and nitrogen fertilization.

The desert zone of brown, brown solonetzic, gray-brown and sandy desert soils is found to be in coincidence with the Pre-Caspian soil-agromeliorative region characterizing by the continental dry climate with the soft or moderately cold winter and the sufficient heat amount. The arable lands on brown and brown solonetzic soils under irrigation occupy 0.1% of the total area under crops. Among the cultivated crops the vegetables, melons and gourds, fruit plantations are dominant; the cereals include the spring crops of middle-and late maturity. There is an experience in growing such technical crops as cotton. The farming systems are identical to those used in the South-European region.

The subtropical humid-forest zone of zheltozems, alluvial, alluvial-swampy and meadow soils under conditions of the temperate continental and excessively humid climate with the soft snowless winter and a higher supply with the heat amount. The arable lands occupy the drained territory on zheltozems accounting for 0.06% of the total area under crops. The farming systems are based upon the water regulation, decrease in the soil acidity and the humus accumulation (10-12 t/ha/year); the measures to prevent the soil erosion and compaction are required.

Such a comprehensive analysis of the natural potential in regions of Russia may be useful for a scenario of possible global climate warming capable to exert the influence on the farming systems, agrotechnologies and the rational allocation of areas under crops.

REFERENCES

1. Atlas SSSR, Moscow, 1984, 260 p.

2. Voskresenskii P.S., Leont'ev O.K. at al. *Geomorfologicheskoe raionirovanie SSSR i prilegayushchikh morei*, Moscow, Vysshaya shkola, 1980, 343 p.

3. Val'ter G. Rastitel'nost' zemnogo shara (ekologo-fiziologicheskaya kharak-teristika), T. III, Moscow, 1975, 427 p.

4. Gvozdetskii N.A. Fiziko-geograficheskoe raionirovanie SSSR (karta), Moscow, 1967.

5. Geobotanicheskaya karta SSSR 1 : 4 000 000, Eds. LavrenkoE.M., V.B., Sochava, Moscow, 1954.

6. *Geobotanicheskoe raionirovanie SSSR* (Vasil'ev Ya.Ya., Lavrenko E.M., Leskov A.I. at al.), Moscow-Leningrad, 1947, 152 p.

7. Geomorfologicheskoe raionirovanie SSSR, Moscow–Leningrad, 1947, 172 p.

8. Geomorfologicheskoe raionirovanie SSSR (karta), Moscow, 1980.

9. Dobrovol'skii G.V., Urusevskaya I.S. Geografiya pochv, Moscow, 1984, 415 p.

10. Dobrovol'skii G.V., Rozov N.N., Urusevskaya I.S. Karta pochvennogeograficheskogo raionirovaniya (M 1 : 8 mln), Moscow, 1983.

11. Dobrovol'skii G.V., Urusevskaya I.S. Karta pochvenno-geograficheskogo raionirovaniya (M 1 : 8 mln), Moscow, 1997.

12. Dobrovol'skii G.V., Rozov N.R., Urusevskaya I.S. Printsipy sostavleniya pochvenno-geograficheskogo raionirovaniya SSSR dlya vysshei shkoly, Moscow, 1981, pp. 88–94.

13. Dokuchaev V.V. K ucheniyu o zonakh prirody. Izbr. soch. T. III, Moscow, 1949, pp. 317–329.

14. Dokuchaev V.V. Russkii chernozem. Izbr. soch, T. I, Moscow, 1948, pp. 36, 40.

15. *Estestvenno-istoricheskoe raionirovanie*, Moscow–Leningrad, 1947. 374 p.

16. Zaidel'man F.R., Bolatbekova K.S. The Concepts and Experience of Agrolandscape Zoning for the Support of Agriculture and Soil Reclamation (by the Example of the Nonchernozemic Zone of Russia), *Eurasian Soil Science*, 1997, No 3, pp. 318–325.

17. Zaidel'man F.R., Kovalev N.G., Chumicheva G.D., Nikiforova A.A., Bolatbekova K.S., Karmanov I.I., Bulgakov D.SPrinciples and Experience of Compiling Agrolandscape Ecological Soil-Reclamation Maps, *Eurasian Soil Science*, 2004, No 6, pp. 624–633.

18. Zemel'nye resursy SSSR. Prirodno-sel'skokhozyaistvennoe raionirovanie territorii oblastei, kraev, ASSR i respublik, Ch.1, Moscow, 1990, 261 p.

19. Isachenko A.G. Landshaftovedenie i fiziko-geograficheskoe raionirovanie, Moscow, 1991, 366 p.

20. Isachenko A.G. Osnovy landshaftovedeniya i fiziko-geograficheskoe raionirovanie, Moscow, 1965. 327 p.

21. Kireev D.M., Sergeeva V.L. Landshaftno-morfologicheskoe kartografirovanie lesov, Moscow, 1992. 60 p.

22. Kolesnikov B.P. O kompleksnom raionirovanii lesnykh territorii, *Voprosy lesovedeniya*, 1973, T. 2, pp. 37–42.

23. Koloskov P.I. Klimaticheskii faktor sel'skogo khozyaistva i agroklimaticheskoe raionirovanie, Leningrad, 1971, 328 p.

24. Kurnaev P.F. Lesorastitetel'noe raionirovanie SSSR, Moscow, 1973, 202 p.

25. Lavrenko E.M. O fitogeosfere, Voprosy geografii, 1949, Vol. 15.

26. Landshaftno-geokhimicheskoe raionirovanie i okhrana sredy, *Voprosy geografii*. Sb. 120, Moscow, 1983, 207 p.

27. Mil'kov F.N. Prirodnye zony SSSR, Moscow, 1977, 293 p.

28. Osobennosti ispol'zovaniya pochv yuzhno-taezhnoi zony (Metodicheskie rekomendatsii i spravochnye materialy), Moscow, 1988, 51 p.

29. Osobennosti ispol'zovaniya pochv lesostepnoi zony (Metodicheskie rekomendatsii i spravochnye materialy), Moscow, 1988, 67 p.

30. Osobennosti ispol'zovaniya pochv stepnoi i sukhostepnoi zon (Metodicheskie rekomendatsii i spravochnye materialy), Moscow, 1989, 67 p.

31. Osobennosti ispol'zovaniya pochv pustynnoi, predgorno-subtropicheskoi i gornoi zon (Metodicheskie rekomendatsii), Moscow, 1990, 52 p.

32. Pochvenno-geograficheskoe raionirovanie SSSR (v svyazi s sel'skokhozyaistvennym ispol'zovaniem zemel'), Moscow, 1962, 424 p.

33. Pochvenno-geograficheskoe raionirovanie. Natsional'nyi atlas pochv Rossiiskoi Federatsii, Ed. S.A. Shoba, Moscow, 2011, pp. 196–201, 633 p.

34. Prirodno-sel'skokhozyaistvennoe raionirovanie zemel'nogo fonda SSSR, Eds. V.V. Egorova et al., Moscow, 1975. 256 p.

35. Prirodno-sel'skokhozyaistvennoe raionirovanie i ispol'zovanie zemel'nogo fonda SSSR, Ed. A.N. Kashtanov, Moscow, 1983, 336 p.

36. Prokaev V.I. *Fiziko-geograficheskoe raionirovanie*, Moscow, 1983. 174 p. 37. Rozov N.N., Rudneva E.N. at al. Kompleksnoe pochvenno-agromeliorativnoe raionirovanie pakhotnykh zemel' SSSR, *Pochvovedenie*, 1989, No 1, pp.79–92.

38. Rozhkov V.A. Pochvennaya informatika, Moscow, 1989. 222 p.

39. Sel'skokhozyaistvennoe raionirovanie (karta M 1 : 4 mln), Ed. A.N. Rakitnikova, Moscow, 1989.

40. Selyaninov G.T. Printsipy agroklimaticheskogo raionirovaniya SSSR, Voprosy agroklimaticheskogo raionirovaniya SSSR, Moscow, 1958, pp. 7–14.

41. Skhema rasprostraneniya osnovnykh negativnykh protsessov degradatsii, limitiruyushchikh plodorodie pochv na sel'skokhozyaistvennykh zemlyakh Rossii. Gosudarstvennaya programma monitoringa zemel' Rossiiskoi Federatsii, Moscow, 1991, 228 p.

42. Troitskii V.A. *Gidrologicheskoe raionirovanie SSSR*, Moscow–Leningrad, 1948, 112 p.

43. Chupakhin V.M. Drobnoe kompleksnoe prirodnoe raionirovanie zemel'nogo fonda na landshaftnoi osnove, *Voprosy geografii*, Sb. 124, 1984, pp. 120–130.

44. Chupakhin V.M. Osnovy landshaftovedeniya, Moscow, 1987, 168 p.

45. Shashko D.I. Agroklimaticheskoe raionirovanie SSSR, Moscow, 1967, 335 p.

46. Shashko D.I. Agroklimaticheskie resursy SSSR (s kartoi), Leningrad, 1985, 248 p.

47. Shennikov A.P. Vvedenie v geobotaniku, Leningrad, 1964, 447 p.

48. Shishov L.L., Karmanov I.I., Durmanov D.N. Kriterii i modeli plodorodiya pochv, Moscow, 1987, 184 p.

49. Shul'gin A.M. Meliorativnaya geografiya, Moscow, Vysshaya shkola, 1980, 288 p.

50. Ekologo-geograficheskoe kartografirovanie i raionirovanie Sibiri. Novosibirsk, 1990, 196 p.