УДК 631.635

ХАРАКТЕРИСТИКА ГУМУСОВЫХ ВЕЩЕСТВ АГРОДЕРНОВО-ПОДЗОЛИСТОЙ ПОЧВЫ И КОПРОЛИТОВ ДОЖДЕВЫХ ЧЕРВЕЙ

© 2012 г. О. В. Кутовая

Почвенный институт им. В.В. Докучаева Россельхозакадемии, 119017, Москва, Пыжевский пер., 7

Экспериментально установлено, что копролиты дождевых червей имеют повышенное содержание углерода (на 33–51%) и азота (на 3–50%) по сравнению с окружающей почвой. Однако щелочная (фракция I) и пирофосфатно-щелочная (фракция II) вытяжки извлекают из копролитов меньше как $C_{\Gamma K}$, так и $C_{\Phi K}$, чем из почвы. Это может быть обусловлено особенным, оригинальным строением гумусовых веществ копролитов, а также характером их связи с минеральной частью почвы.

Ключевые слова: гумусовые кислоты, копролиты, дождевые черви.

Мир беспозвоночных, как и мир микроорганизмов, служит важнейшим фактором в накоплении и возобновлении запасов почвенного гумуса (Ковда, 1976). По потреблению органического вещества представителей педофауны можно разделить на первичных разрушителей органического материала, детритофагов и собственно гумусообразователей. К последним следует отнести животных, перемешивающих органическое вещество с минеральным и способствующих формированию почвенного матричного гумуса – гумуса, закрепленного на поверхности почвенных частиц (Карпачевский, 2005). Дождевые черви, микрофауна, микроскопические грибы и ряд прокариотов являются первичными и вторичными деструкторами растительных остатков. Животные, обитающие в почве, переводят органическое вещество детрита и перегноя в почвенный гумус. В этом процессе участвуют в первую очередь дождевые черви. Они образуют копролиты: смесь минерального субстрата с органическим веществом. В копролитах дождевых червей накапливаются углерод и азот (Звонкова, Тиунов, 1997; Курчева, 1971; Тиунов, 2007). В период активного питания дождевых червей в почве усиливается микробиологическая активность. Результатом этого является интенсивная минерализация органических соединений. Часть продуктов окисления включается в процессы ресинтеза и гумификации. Только интенсивная биологическая активность и богатство жизненных форм являются определяющими в накопления гумуса высокого качества (Орлов, 1974).

Основным показателем при оценке направления и скорости гумификации является биологическая (биохимическая) активность почв, которая определяется не только микроорганизмами, но и животным населением почвы (Кононова, 1963; Добровольский, 1971; Курчева, 1971). Все эти факты говорят о значимости биоты, необходимости изучать биохимические процессы гумусообразования, самым тесным образом связанные с живой частью почвы.

Гумусовые вещества (ГВ) почв и копролитов дождевых червей исследовали на агродерново-подзолистой почве Московской области на мелкоделяночном опыте Зеленоградского стационара Почвенного института им. В.В. Докучаева. Для исследования были взяты следующие варианты опыта:

К (контроль) – $N_0P_0K_0$, навоз 0;

 $I - N_0 P_0 K_0$, навоз 120 т/га;

 $II - N_{180}P_{180}K_{210}$, навоз 0;

 $III - N_{180}P_{180}K_{210}$, навоз 120 т/га;

 $IV - N_{60}P_{60}K_{60}$, навоз 60 т/га.

Копролиты были собраны с поверхности делянок опыта в весенний пик активности червей (конец апреля). В этот же срок отобраны образцы почвы. Для изучения состава, свойств, природы гумусовых веществ проведен ряд исследований.

Органическое вещество почвы можно разделить на две основные категории в зависимости от чувствительности к биохимическому разложению и трансформации: лабильную, быстро минерализуемую часть, обеспечивающую растения элементами питания, и устойчивую, консервативную часть гумуса, сохраняющуюся в течение длительного времени (Когут, 2003; Тейт, 1991; Титова, Когут, 1991). Для выявления активного, лабильного компонента гумуса и его инертной части был использован биологический метод компостирования почвенных образцов.

ИЗУЧЕНИЕ УСТОЙЧИВОСТИ ГУМУСОВЫХ ВЕЩЕСТВ ПОЧВЫ И КОПРОЛИТОВ

Перед закладкой опыта исследовали содержание основных органогенных элементов: углерода, азота и водорода – в почвах и копролитах на автоматическом анализаторе CHN Perkin Elmer.

Элементный состав почвы и копролитов по вариантам опыта представлен в табл. 1.

В копролитах по сравнению с почвой накоплено по вариантам опыта от 33 до 51% углерода и от 3 до 50% азота, что является результатом трофической избирательности дождевых червей (Марфенина, Ищенко, 1997; Bonkowski et al. 2000), а также активизации микрофлоры и аккумулятивной направленностью биохимических процессов в копролитах. Повышенное содержание азота в экскрементах отмечено и другими исследователями (Всеволодова-Перель и др., 1991; Стриганова и др., 1993). Кроме того, внутри копролитов создаются условия, снижающие зависимость биологической активности от факторов почвенной среды: кислотности, влажности, окислительно-восстановительного потенциала и других характеристик. Таким образом, копролиты дождевых червей являются зоной повышенной биологической активности, в которых вполне реальна не только быстрая минера-

Таблица 1. Элементный состав агродерново-подзолистой почвы и копролитов по вариантам опыта (над чертой — почва, под чертой — копролиты), % от абсолютно сухого вещества

No	Вариант опыта	С	N	Н	C: N
К	Контроль	<u>1,26</u>	<u>0,12</u>	<u>0,44</u>	<u>10,5</u>
	$N_0P_0K_0$,	1,89	0,18	0,52	10,5
	навоз 0				
I	$N_0P_0K_0$,	<u>1,447</u>	<u>0,146</u>	0,44	0 <u>9,9</u>
	навоз 120	2,190	0,150	0,54	14,6
II	$N_{180}P_{180}K_{210}$	<u>1,19</u>	0,098	0,39	<u>12,1</u>
	навоз 0	1,75	0,138	0,46	12,7
III	$N_{180}P_{180}K_{210}$,	<u>1,47</u>	0,118	0,43	12,4
	навоз 120	1,96	0,139	0,50	14,1
IV	$N_{60}P_{60}K_{60}$	0,990	0,113	0,43	<u>8,8</u>
	навоз 60	1,396	0,124	0,46	11,2

лизация свежих остатков и неспецифических веществ, но и отщепление углеводных и аминокислотных остатков ГВ, во всяком случае, от относительно «молодых» гуминовых кислот (Орлов, 1974).

Азот является необходимым компонентом гумусовых кислот и в значительной мере определяет их свойства. По результатам нашего опыта содержание азота в копролитах во всех вариантах выше, чем в почве. Можно сделать предположение об инициации почвенно-биологических процессов, связанных с накоплением азота и формированием гуминовых кислот.

Различают несколько путей включения молекул минерального азота в гумифицированные соединения. Основной – это микробная иммобилизация. Прямые наблюдения (Bouche et al., 1990) показали, что почвенные животные, среди которых дождевые черви составляют 80% биомассы, играют главную роль в этом процессе. В кишечнике дождевых червей азотистые соединения перемешиваются с перевариваемым органическим веществом, затем выбросы инкубируются в почве и активно заселяются микроорганизмами, при этом минеральный азот превращается в органический в составе копролитов. Из копролитов азот может быть ассимилирован растениями. В этих процессах наблюдается тесная пространственная связь между минерализацией азота и поглощением его растениями.

Одной из важнейших характеристик органического вещества почвы служит отношение C:N, указывающее на обогащенность его азотом. В наших исследованиях в копролитах, как правило, отношение C:N шире по сравнению с почвой. В данном случае, вероятно, можно говорить о различиях механизмов трансформации органических веществ, прошедших через желудочнокишечный тракт червей и содержащихся в самой почве.

Одним из подходов к изучению формирования ГВ является моделирование процессов трансформации органических материалов в условиях лабораторного опыта (Пестряков и др., 1990). Биологическим методом разделения органического вещества почвы на доступную, быстроминерализуемую и устойчивую, консервативную части является метод инкубации — выдерживание почвы в определенных условиях влажности и температуры длительный период времени.

Для изучения устойчивости гумусовых веществ и разделение их на лабильную (легкоминерализуемую) и инертную (более устойчивую) части почву и копролиты дождевых червей компостировали в течение пяти месяцев при температуре 25–27°С и влажности 70–72% от ППВ. Содержание органогенных элементов в образцах после компостирования представлено в табл. 2. Данные по содержанию СNН в почве и копролитах после компостирования в процентах к исходному даны в табл. 3.

Анализируя результаты эксперимента, можно сказать, что компостирование привело к потере углерода, входящего в легкоразлагаемые компоненты. Его количество уменьшилось практически во всех вариантах опыта и почвы, и копролитов. Наименьшая потеря зафиксирована в варианте IV со средними дозами минеральных и органических удобрений, а в образце почвы наблюдается даже некоторое его увеличение. В этом варианте, вероятно, синтезируются более устойчивые к разложению органические вещества.

Потеря углерода в копролитах всегда больше, чем в почве на 1–21%, независимо от варианта опыта. Видимо, в копролитах создаются особенные, присущие именно им, условия для форми рования гумусовых веществ более простых по строению, «молодых форм» гумуса, которые непрочно связаны с минеральной

Таблица 2. Элементный состав агродерново-подзолистой почвы и копролитов по вариантам опыта после компостирования (над чертой – почва, под чертой – копролиты). % от абсолютно сухого вешества

№	Вариант опыта	С	N	Н	C: N
К	Контроль	<u>1,15</u>	0,110	0,40	10,4
	$N_0P_0K_0$,	-	-	-	-
	навоз 0				
I	$N_0P_0K_0$	<u>1,22</u>	<u>0,104</u>	<u>0,35</u>	11,7 9,3
	навоз 120	1,39	0,150	0,36	9,3
II	$N_{180}P_{180}K_{210}$	<u>0,86</u>	<u>0,101</u>	<u>0,36</u>	8,5 9,1
	навоз 0	1,25	0,138	0,36	
III	$N_{180}P_{180}K_{210}$	<u>1,34</u>	0,130	0,39	<u>10,3</u>
	навоз 120	1,52	0,180	0,39	8,4
IV	$N_{60}P_{60}K_{60}$,	1,060	0,125	0,37	8,5
	навоз 60	1,298	0,124	$\frac{0.34}{0.34}$	10,8
	nabos oo	1,270	0,124	0,54	10,0

частью почвы и способны к активной минерализации при компостировании.

Потери азота отмечены только для почв контроля и в варианте с максимальными дозами навоза. Компостирование практически не повлияло на содержание азота в копролитах, за исключением варианта с максимальными дозами минеральных и органических удобрений, где наблюдается его прибавка. Причинами накопления азота после компостирования могут быть следующие: прирост биологического азота за счет ассимиляции его микроорганизмами; внедрение различными путями в глино-гумусовые ассоциации с минеральными частицами при образовании гумина микробного синтеза (Janzen et al., 1988); физическая адсорбция высвобождаемого азота глинистыми минералами. Кроме того, необходимо принять во внимание относительный учет азота в образцах, так как в связи с убылью углерода, доля N могла повышаться.

Потери содержания углерода и накопление азота при компостировании могут говорить о минерализации в большей степени лабильных углеводных компонентов органических веществ (Субботина и др., 1983). В связи с этим соотношение С:N в выпаханной почве (контрольный вариант) практически не изменилось, а в копролитах и в вариантах почвы с использованием минера-

Таблица 3. Содержание CNH в почве и копролитах по вариантам опыта после компостирования (над чертой – почва, под чертой – копролиты), % от исходного

No	Вариант опыта	С	N	Н
К	Контроль	91,27	91,66	90,91
	$N_0P_0K_0$,	-	-	-
	навоз 0			
I	$N_0P_0K_0$,	84,31	<u>71,23</u>	<u>79,55</u>
	навоз 120	63,47	100,00	66,66
II	$N_{180}P_{180}K_{210}$,	<u>72,27</u>	103,06	<u>92,31</u>
	навоз 0	71,43	100,00	78,26
III	$N_{180}P_{180}K_{210}$,	<u>91,16</u>	<u>110,17</u>	<u>26,53</u>
	навоз 120	77,55	129,50	78,00
IV	$N_{60}P_{60}K_{60}$,	107,07	110,61	86,05
	навоз 60	92,98	100,00	43,91

льных удобрений или органо-минеральной системы (варианты II–IV) сузилось с 10–14 до 8–10, т.е. обогащенность органического вещества копролитов азотом увеличилась.

Таким образом, в копролитах содержание углерода и азота выше, чем в почве. Накопление этих элементов связано с трофической избирательностью дождевых червей, а также с повышенной микробиологической и биохимической активностью, в результате чего, вероятно, формируются гуминовые кислоты.

Соотношение C:N в копролитах шире, чем в почве, что говорит об отличии процессов трансформации органического вещества в копролитах по сравнению с почвой.

В процессе компостирования копролиты теряли больше углерода, чем почва, что говорит о меньшей устойчивости органического вещества копролитов и, видимо, связано с минерализацией преимущественно лабильных компонентов гумусовых веществ. В отличие от углерода обогащенность копролитов азотом при компостировании возрастала. Это связано с повышенной численностью анаэробных азотфиксирующих микроорганизмов, активно развивающихся в копролитах, что ранее установленно экспериментально (Кутовая, 2008).

СОСТАВ ГУМУСОВЫХ ВЕЩЕСТВ ПОЧВ И КОПРОЛИТОВ

Для характеристики состава гумуса, выявления его генетических различий и форм связи с минеральной частью почвы проводили исследования группового и фракционного состав гумуса почвы и копролитов.

В ходе анализа разделяли гумусовые вещества на группы, различающиеся по природе. При определении группового состава по методу Тюрина определены гуминовые кислоты (**ГК**) и фульвокислоты (**ФК**) фракции I, которые извлекали при непосредственной обработке почвы 0,1 н. NаОН. В эту вытяжку переходят свободные гуминовые кислоты и связанные с подвижными полуторными окислами, а также фульвокислоты, связанные в почве с фракцией I гуминовых кислот (Орлов, Гришина, 1981).

Гуминовые и фульвокислоты фракции II извлекали и определяли при последовательной обработке почвы и копролитов раствором $0.1\,$ н. $NaOH+0.1\,$ M $Na_4P_2O_7.$ В пирофосфатно-щелочную

вытяжку (фракция II) переходят гумусовые вещества, свободные и связные с несиликатными формами железа и алюминия, а также связные с кальцием.

В водной и щелочной средах пирофосфаты кальция, железа и алюминия труднорастворимы. При взаимодействии пирофосфата натрия с гуматами кальция и полуторных окислов образуются соединения типа $Ca_2P_2O_7 \cdot 5H_2O$ и $Fe_4(P_2O_7)_3 \cdot H_2O$, не растворимые в воде, но частично растворимые в избытке пирофосфата с образованием комплексных солей. Поэтому реакция образования гуматов натрия протекает с большой полнотой, и выход гуматов при однократной экстракции увеличивается. Пирофосфат не разрушает несиликатные формы полуторных окислов и не извлекает Al и Fe из материнских пород (Практикум ..., 2001).

Углерод гумусовых веществ почв и копролитов определяли по методу Тюрина со спектрофотометрическим окончанием в следующих вариантах опыта: контроль ($N_0P_0K_0$, навоз 0) без внесения минеральных и органических удобрений; вариант III ($N_{180}P_{180}K_{210}$, навоз 120 т/га) с максимальным количеством минеральных и органических удобрений.

Анализ данных табл. 4, 5 показал, что из копролитов экстрагируется на 11–18% больше гумусовых веществ, чем из почвы в абсолютном выражении (от массы почвы). Однако относительно углерода исходного образца в щелочную вытяжку из копролитов выходит на 12–21% углерода меньше, чем из почвы. Полученные результаты говорят о неоднозначности интерпретации данных.

С одной стороны, меньшая экстрагируемость ГВ копролитов может быть результатом значительных отличий их строения по сравнению с ГВ почвы. С другой стороны, при компостировании копролиты потеряли углерода больше, чем почва, что может говорить о большей доступности и упрощенной структуре ГВ выбросов дождевых червей. Можно допустить особенное оригинальное строение гумусовых веществ копролитов, лабильные формы которых могут обладать нетривиальной структурой, вероятно, также имеет место их несколько более тесная взаимосвязь с минеральной частью почвы.

В почве и копролитах контрольного варианта без удобрений содержание гуминовых кислот первой фракции было ниже, а соде-

Таблица 4. Состав гумусовых веществ почв и копролитов фракции I (над чертой – % C от массы почвы/копролитов; под чертой – % от C исходно-

го почвы/копролитов)

Ропионт	Образец	% С ис-	C m	$C_{\Gamma K}$: $C_{\Phi K}$		
Вариант	Образец	70 C HC-	C_{opr} , извлекаемый $0,1$ н.			$C_{\Gamma K}$. $C_{\Phi K}$
опыта		ходного	Na OH			
		почвы	Собщ	$C_{\Gamma K}$	$C_{\Phi K}$	
Контроль	Почва	1,13	0,305	0,090	0,215	0,42
$N_0 P_0 K_0$			26,99	7,97	19,02	
навоз 0	Копролиты	1,49	0,338	0,104	0,234	0,44
			22,69	6,98	15,71	
$N_{180}P_{180}K_{210}$,	Почва	1,31	0,328	0,119	0,209	0,57
навоз 120			25,03	9,08	15,95	
	Копролиты	1,74	0,387	0,40	0,247	0,57
			22,25	8,05	14,20	

Таблица 5. Состав гумусовых веществ почв и копролитов фракции II (над чертой – % C от массы почвы/копролитов; под чертой – % от C ис-

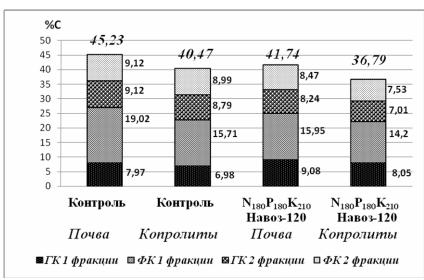
ходного почвы/копролитов)

Вариант	Образец	% С ис-	Сорг, извлекаемый			$C_{\Gamma K}$: $C_{\Phi K}$
опыта		ходного	0,1 н. Na OH +0,1 M		-0,1 M	
		почвы	$Na_4P_2O_7$			
			Собщ	$C_{\Gamma K}$	$C_{\Phi K}$	
Контроль	Почва	1,13	0,206	0,103	0,103	1,00
$N_0P_0K_0$,			18,24	9,12	9,12	
навоз	Копролиты	1,49	0,265	<u>0,131</u>	0,134	0,98
			17,78	8,79	8,99	
$N_{180}P_{180}K_{210}$,	Почва	1,31	0,209	0,108	0,111	0,97
навоз 120			16,71	8,24	8,47	
	Копролиты	1,74	0,253	0,122	0,131	0,93
			14,54	7,01	7,53	

ржание фульвокислот выше, чем на удобренных вариантах. Соотношение $C_{\Gamma K}$: $C_{\Phi K}$ составляет 0,42 и 0,44 соответственно. В дерново-подзолистых почвах ΓK обогащены периферическими боковыми цепями, что сближает их по свойствам с ΦK . Фульвокислоты накапливаются в сравнительно больших количествах, а поскольку условия для их сохранения благоприятны, возникает возможность образования и накопления более сложных форм ΦK , обогащенных углеродом (Орлов, 1974).

В агродерново-подзолистой почве с внесением высоких доз минеральных и органических удобрений, где микробиологическая активность значительно выше по сравнению с контролем (Кутовая, 2008), фульвокислоты более доступны микроорганизмам, они быстро разрушаются, обновляются. Соответственно доля фульвокислот в составе гумуса снижается. Гуминовые же кислоты, более стабильные и устойчивые к разрушению, накапливаются. Соотношение $C_{\Gamma K}$: $C_{\Phi K}$ в этом варианте возрастает до 0,57 как в почве, так и копролитах. Высокая микробиологическая активность способствует быстрому вовлечению гумусовых веществ в новые биологические процессы.

Бурые ГК представлены более молодыми, в химическом смысле, менее дегидратированными кислотами, тогда как серые ГК – химически более зрелыми, сильнее дегидратированными (по классификации Stevenson (1982): бурые – ГК фракции I, серые – ГК фракции II).


По данным нашего эксперимента, во второй фракции гумусовых веществ ($C_{\text{орг}}$, извлекаемый 0,1 н. NaOH + 0,1 М Na₄P₂O₇), обнаружено приблизительно равное для всех объектов и вариантов опыта количество как гуминовых, так и фульвокислот. Однако тенденция увеличения всех абсолютных показателей в образцах копролитов остается прежней.

Необходимо отметить, что фульвокислот фракции II экстрагировалось практически в два раза меньше, чем ФК фракции I, в отличие от гуминовых кислот. Количество ГК фракции II образцов почвы и копролитов в выпаханной почве (контрольный вариант) на 14–26% выше по сравнению с ГК фракции I, тогда как гуминовых кислот варианта с удобрениями – меньше и в почве, и в копролитах (на 10–15% соответственно). Таким образом, под воздействием минеральных удобрений происходит довольно значительное увеличение как общего содержания лабильных гумусовых кислот, так и собственно гуминовых кислот. Механизм такого процесса может иметь двоякую природу (Когут, 2003): с одной стороны, применение минеральных удобрений приводит к увеличению биомассы растительных остатков, что вызывает новообразование гумусовых веществ, входящих в состав лабильных; с другой стороны, происходит трансформация фракционного состава

гумуса – увеличивается содержание гумусовых веществ фракции II и снижается содержание гумусовых веществ фракции II. Такое соотношение, обнаруженное для черноземов, повторяется в наших исследованиях для агродерново-подзолистой почвы, в том числе и для выбросов дождевых червей, обитающих в ней.

Общий долевой состав $C_{\Gamma K} + C_{\Phi K}$ фракций I и II гумусовых веществ от C почвы и копролитов показан на рисунке.

Из копролитов по вариантам опыта экстрагируется меньше гумусовых веществ, чем из почвы. Причиной этого может быть изменение взаимосвязи с неорганической составляющей почвы за счет перемешивания минеральной части с гумусовыми веществами в кишечнике дождевых червей, а также модификация такой смеси за счет собственных ферментов олигохет и гидролитических ферментов микроорганизмов. В результате чего возможно формирование органического вещества оригинальной природы, заслуживающего особого внимания и требующего специальных исследований.

Общий долевой состав $C_{\Gamma K} + C_{\Phi K}$ фракций I и II гумусовых веществ почвы и копролитов по вариантам опытов (%C от C исходной почвы/копролитов).

Таким образом, анализ результатов данного эксперимента показал, что в копролитах накапливается гумусовых веществ больше по сравнению с почвой, что обусловлено трофической избирательностью дождевых червей, а также стимуляцией микробиологической активности и аккумулятивной направленностью биохимических процессов в копролитах.

Однако экстрагируемость гуминовых и фульвокислот относительно общего улерода из копролитов щелочной (фракция I) и пирофосфатно-щелочной (фракция II) вытяжками снижена по сравнению с почвой. Причинами данного явления могут быть своеобразное строение гумусовых веществ копролитов, модифицированная связь ГВ копролитов с минеральной частью почвы, а также стремительный процесс трансформации экстрагируемой части гумуса копролитов микроорганизмами и вовлечение продуктов минерализации в новые биологические процессы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Всеволодова-Перель Т.С., Карпачевский Л.О., Надточий С.Э. Участие сапрофагов в разложении листового опада // Почвоведение. 1991. № 2. С. 57–65.
- 2. Добровольский Г.В. Поймы рек как ландшафты высокой плотности жизни и интенсивного почвообразовательного процесса // Биологическая продуктивность и круговорот химических элементов в растительных сообществах. Л.: Наука, 1971.
- 3. Звонкова Н.А., Тиунов А.В. Некоторые особенности почвы, прилегающей к норам дождевых червей *Lumbricus terrestris* L. // Вестник Моск. ун-та. 1997. Сер. 17, почвоведение. Вып. 3. С. 35—38.
- 4. *Карпачевский Л.О.* Экологическое почвоведение. М.: ГЕОС, 2005. 336 с.
- 5. *Ковда В.А.* Биогеохимические циклы в природе и их нарушение человеком // Биогеохимические циклы в биосфере. Мат-лы VII Пленума СКОПЕ. М.: Наука, 1976. С. 19–85.
- 6. *Когут Б.М.* Принципы и методы оценки содержания трансформируемого орагнического вещества в пахотных почвах // Почвоведение. 2003. № 3. С. 308-316.

- 7. Кононова М.М. Органическое вещество почвы. М. Изд-во АН СССР, 1963.
- 8. *Курчева Г.Ф.* Роль почвенных животных в разложении и гумификации растительных остатков. М.: Наука, 1971.
- 9. *Кутовая О.В.* Трансформация структуры микробного сообщества дерново-подзолистой почвы под воздействием дождевых червей // Агрохимический вестник. 2008. № 2. С. 13–14.
- 10. *Марфенина О.Е., Ищенко И.А.* Избирательность дождевых червей в отношении почвенных микроскопических грибов // Изв. АН. Сер. биологическая. 1997. № 4. С. 504–506.
- 11. *Орлов Д.С.* Гумусовые кислоты почв. М.: Изд-во Моск. унта, 1974. 335 с.
- 12. Орлов Д.С., Гришина Л.А. Практикум по химии гумуса // Практикум по химии гумуса. М.: Изд-во Моск. ун-та, 1981. 272 с.
- 13. Пестряков В.К., Ковш Н.В., Попов А.И., Чуков С.Н. Моделирование трансформации органических веществ в лабораторном эксперименте // Почвоведение. 1990. № 3. С. 30–40.
- 14. Практикум по агрохимии / Под ред. Минеева В.Г. М.: Издво Моск. ун-та 2001. 689 с.
- 15. Стриганова Б.Р., Пантош Т.Д., Тиунов А.В. Сравнительная оценка активности азотфиксации в кишечнике разных видов дождевых червей // Изв. РАН. 1993. Сер. Биологическая. Вып. 2. С. 257–263.
- 16. Субботина О.В., Дьяконова К.В., Булева В.С. Агрогенное воздействие на ценоз дождевых червей и их влияние на гумусовое состояние дерново-подзолистой почвы // Проблемы антропогенного почвообразования: Тез. докл. междунар. конф. М.: Почв. ин-т им. В.В. Докучаева, 1997. Т. 3. С. 111–114.
- 17. *Тейт Р.* Органическое вещество почвы. М.: Мир, 1991. 400 с.
- 18. *Титова Н.А., Когут Б.М.* Трансформация органического вещества при сельскохозяйственном использовании почв // Итоги науки и техники. ВИНИТИ. Сер. Почвоведение и агрохимия. 1991. Т. 8. 154 с.
- 19. *Тиунов А.В.* Метабиоз в почвенной системе: влияние дождевых червей на структуру и функционирование почвенной биоты. Автореф. дис. . . д.б.н. М. 2007. 46 с.

- 20. Тюрин И.В. Некоторые результаты работ по сравнительному изучению состава гумуса в почвах СССР // Работы по органическому веществу почв. М.: Изд-во АН СССР, 1951. С. 22-32.
- 21. Bonkowski M., Cheng W., Griffiths B.S., Alphei J., Scheu S. Microbial-faunal interactions in the rhizosphere and effects on plant growth // Eur. J. Soil Biol. 2000. № 36. P. 135–147.
- 22. Bouche M.B., Cortez J., Ferriere G., Hameed R. The nitrogen short cycle from plant to plant: measurements, models and in situ validations // Trans. 14th Cong. Of ISSS. Kyoto, Japan, 1990. T. IV. P. 629–630.
- 23. *Janzen R.A., Shaykewich C.F., Goh T.B.* Stabilisation of residual C and N in soil // Ibid. 1988. T. 68. P. 733–745.
- 24. *Stevenson F.J.* Humus Chemistry: Genesis, Composition, Reactions. N.Y.: Wiley-Interscience, 1982. 443 p.

CHARACTERISTICS OF HUMUS AND COPROLITES OF EATHWORMS IN AGRO-SODDY PODZOLIC SOILS

O. V. Kutovaya

It has been experimentally established that coprolites of earthworms have an increased content of carbon (33-51%) and nitrogen (3-50%) as compared to the surrounding soil. However, both C_{ha} and C_{fa} are extracted by alkaline and pyrophosphate-alkaline fractions from coprolites to a lesser extent. Probably, it is conditioned by specific character of humus substances in coprolites and their connection with the mineral part of the soil.

Key words: humic acids, coprolites, earthworms.