ГЛИНИСТЫЕ МИНЕРАЛЫ ТОНКОДИСПЕРСНЫХ ФРАКЦИЙ ДЕРНОВО-КАРБОНАТНЫХ ПОЧВ ТЕРРИТОРИИ ЧЕРЕПОВЕПКОЙ ТЕХНОГЕННО-ХИМИЧЕСКОЙ АНОМАЛИИ

Н.П. Чижикова, О.Б. Рогова

Почва – открытая сложная многокомпонентная система, активно реагирующая на любые антропогенные воздействия, в том числе такие, которые приводят к загрязнению окружающей среды тяжелыми металлами (TM).

Мощным накопителем ТМ техногенных источников в почвах являются глинистые минералы. Г.В. Мотузова (1999) отмечала, что 30-60% ТМ от общего запаса в почве удерживаются тонкодисперсными фракциями. Механизмам взаимодействия ТМ с глинистыми минералами посвящено значительное количество работ. По П.Л. Митчеллу (Mitchell., 1955) энергия поглощения катионов ТМ глинистыми минералами возрастает в ряду: каолинит — мусковит — иллит. Интересные эксперименты по поведению ТМ с глинистыми минералами проведены Г.В. Мотузовой (1999). Автор подчеркивает, что глинистые минералы, выделенные из почв сорбируют тяжелые металлы в 3-4 раза больше чем минералы, выделенные из пород. Это объясняется большим количеством изоморфных замещений в минералах почв вследствие их большей выветрелости, а также присутствием органно-минеральных пленок.

Задачей наших исследований является анализ минералогического состава тонкодисперсных фракций почв, находящихся в зоне влияния Череповецкого металлургического комбината (ЧМК), длительная эксплуатация которого привела к формированию техногеохимической аномалии. Изменение экологической обстановки в зоне влияния ЧМК подробно описано Дончевой А.В. с соавт. (1979), Калуцковым В.И. (1982), Водяницким Ю.Н. с соавт. (1995, 2000). Из этих материалов следует, что длительное функционирование ЧМК привело к аномально высоким концентрациям хрома, никеля, марганца, меди, цинка, железа, свинца. Нами анализировались фракции менее 1 мкм, выделенные из дерновокарбонатных почв, сформировавшихся в северной части Череповецкой техногенной химической аномалии. Профили были заложены по техногенной катене от комбината на север. Катена разделяется на три участка: 1) – до 5 км от источника загрязнения – включает охранную зону комбината и представляет область сильного загрязнения; 2) - 5-10 км - область среднего загрязнения; 3) – 10-15 км – область слабого загрязнения.

Состав и свойства почв описаны ранее (Водяницкий с соавт., 1995). Почвы в основном имеют нейтральную реакцию. Содержание органического вещества не превышает 2,3%. Сумма обменных катионов невелика: не более 16,4 мг-экв/100 г почвы. Преобладает обменный кальций. Отмечается четкая тенденция уменьшения содержания обменных катионов сверху вниз по профилю. Почвы имеют низкое содержание фракции менее 1 мкм (3-13%).

Минералогические исследования проводились во фракции менее 1 мкм рентген-дифрактометрическим методом. Выделение фракции проведено с помощью метода Н.И.Горбунова (1961), с двукратным растиранием образца в состоянии густой пасты. Суспензии илистых фракций в нативном состоянии были нанесены на покровные стекла с целью получения ориентированных препаратов. Рентгенографировали ориентированные препараты в воздушно-сухом состоянии после сольватации их этиленгликолем и прокаливания при 550° в течение 2 ч. Рентгеносъемка проведена на универсальном рентген-дифрактометре HZG 4а фирмы Карл Цейсс Иенна (Германия).

Диагностика минералов проводилась по общепринятым руководствам. Полуколичественное содержание основных минеральных фаз установлено по методике Бискайя (Biskaye, 1964). Для анализа изменения минералов и смешаннослойных образований илистых фракций и учета кристаллохимических изменений в структуре минералов рассчитаны интенсивности рефлексов, процент от их суммы, а также соотношение интенсивностей рефлексов кварца с таковым слоистых силикатов.

Исследуемая территория характеризуется сложнейшей историей формирования, связанной с работой ледника, который оставил толщу моренных отложений. Мощность, состав и свойства моренных отложений сильно меняются в зависимости от залегания местных коренных пород, форм древнего рельефа и от условий движения и таяния ледника (Соколов, 1957). Ранее (Чижикова и др., 2000) по почвам Вологодской области (территория национального природного парка "Русский Север") были проведены минералогические исследования фракций менее 1, 1-5, 5-10 мкм. Подчеркнуто большое разнообразие минералов, обусловленное сложностью литогенной основы почвообразующего материала. Установлено, что современное почвообразование приводит к активной вермикулитизации биотитовых и хлоритовых структур, разрушению смектитового компонента и относительному накоплению в элювиальных частях профилей каолинита и кварца. Дерново-карбонатные типичные почвы на карбонатной морене с подстиланием известняка в значительной мере по своим илистым минералогическим показателям выделяются доминированием индивидуального смектита.

Рассмотрим минералогический состав и его профильное распределение дерново-карбонатных почв Череповецкой техногеохимической аномалии. Профили расположены в двух, пяти, восьми и двадцати пяти километрах от источника загрязнения.

Профиль глинистого материала (ПГМ) дерново-карбонатной почвы на моренных отложениях, находящийся на расстоянии 2 км от источника загрязнения, характеризуется низким содержанием фракции менее 1 мкм (6-10%). Основу фракций составляют несовершенные каолиниты (27-36%), гидрослюды как ди- так и триоктаэдрического типа (27-47%) и смешаннослойные образования с различным содержанием пакетов нескольких типов: слюдистых, хлоритовых, вермикулитовых, смектитовых (в сумме от компонентов ила – 20-46%). В образце илистой фракции почвы с глубины 70-85 см диагностирован лепидокрокит. Соотношение указанных индивидуальных минералов, смешаннослойных образований и кристаллохимические особенности минералов в пределах профиля меняются (табл. 1, 2, рис. 1).

Почвообразующие породы - моренные отложения - содержат илистый материал, в котором диагностирован каолинит (36%), гидрослюды диоктаэдрического типа (38%) и смешаннослойные слюда-смектитовые образования с примесью хлорит-вермикулитов (в сумме 26%). Вверх по профилю происходят следующие изменения: в значительной степени меняется степень совершенства структуры всех слоистых силикатов, в первую очередь, гидрослюд и смешаннослойных образований. Сумма интенсивностей рефлексов минералов илистых фракций с 655 мм уменьшается до 222 мм в верхнем горизонте. Меняется характер соотношения пакетов в смешаннослойных образованиях. В нижней части смешаннослойные образования представлены смектитами с высоким содержанием смектитовых пакетов в кристаллитах. Вверх по профилю этот тип образований постепенно исчезает, уступая место хлорит- вермикулитам, которые доминируют в образце, взятом с поверхности.

В средней части профиля хлорит-вермикулиты постепенно заменяются хлорит-смектитами, т.е. для каждого горизонта характерен свой спектр смешаннослойных образований. В средней части профиля отмечается существенная разупорядоченность структуры смешаннослойных образований слюда-смектитового типа.

В распределении гидрослюд наблюдается некоторая тенденция уменьшения их содержания в верхнем горизонте. Судя по отношению интенсивностей рефлексов гидрослюд первого порядка ко второму и третьему, в верхней части профиля отмечается большее количество диоктаэдрических разностей.

Таблица 1. Соотношение основных минеральных фаз фракции менее 1

мкм дерново-карбонатных почв территории ЧМК

Глуби-	Содер-	Содержание основных Типы смешаннослойн										
на, см	жание			оаз, % от	образований и их соот-							
,	фрак-	ила	1		ношение							
	ции <1	каоли-	гидро-	сумма	хлорит-	хлорит-	слюда-					
	мкм, %		-	смешанно-	верми-	смекти-	смекти-					
		хлорит	, ,	лойных	кулиты	ты	ты					
		1		образова-	•							
				ний								
Расстояние 2 км от источника загрязнения												
0-10	6	27	27	46	+++	++	- *					
10-20	10	35	30	35	+	++	+					
20-30	10	33	47	20	+	++	++					
30-47	6	34	46	20	-	++	+++					
70-85	Не опр.	36	38	26	-	++	+++					
Расстояние 5 км от источника загрязнения												
10-20	8	33	29	37	++	++	+					
20-30	11	29	41	29	+	+++	+					
30-38	13	18	44	37	-	++	+++					
38-60	Не опр.		48	24	-	++	+++					
Расстояние 8 км от источника загрязнения												
0-10	8	25	50	25	++	++	+ **					
10-20	7	28	52	20	++	++	+					
20-30	6	27	50	22	++	++	+					
30-48	7	22	53	25	+	++	++					
48-66	10	17	57	26	+	+	+++					
Расстояние 25 км от источника загрязнения												
10-20	3	38	40	22	++++	+	-					
30-53	3	41	46	26	++++	+	-					
53-60	6	31	44	25	++++	+	-					

Примечание. Полуколичественная оценка наличия типа смешаннослойного образования: (-) — отсутствие, (+) — около 1/5, (++) — около 2/5, (+++) — около 3/5, (++++) — около 4/5 от суммы смешаннослойных образований всех типов.

^{*} Смешаннослойные образования слюда-смектитового типа с высоким содержанием смектитовых пакетов.

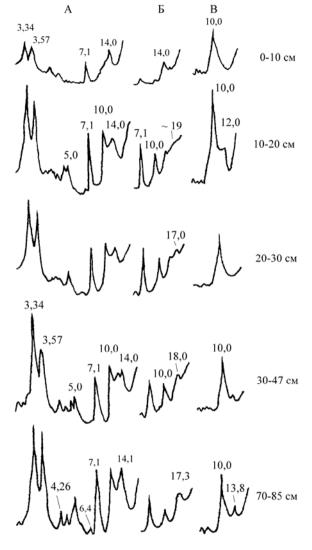
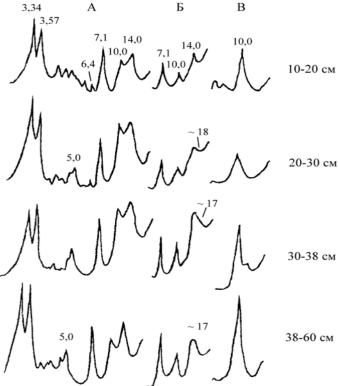
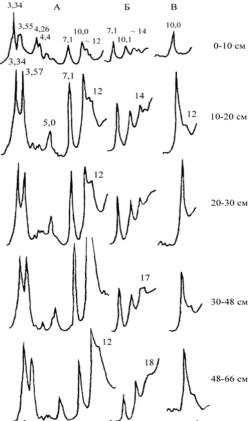

^{**} Смешаннослойные образования слюда-смектитового типа с низким содержанием смектитовых пакетов.

Таблица 2. Соотношение интенсивностей рефлексов (%) минералов фракции менее 1 мкм дерново-карбонатных почв зоны ЧМК

Глу-	Рефлекс, Å											
бина,	14	10	7	5	4,7	4,48	4,26	3,58	3,54	3,34		
СМ												
Расстояние 2 км от источника загрязнения												
0-10	18	7	11	4	5	5	7	14	11	18		
10-20	10	12	13	5	4	3	3	16	4	20		
20-30	12	13	13	5	3	2	2	17	6	17		
30-47	11	12	11	6	4	3	4	14	14	21		
70-85	11	12	14	8	4	2	8	13	11	20		
Расстояние 5 км от источника загрязнения												
10-20	11	10	14	4	5	5	5	15	14	18		
20-30	12	13	11	4	5	2	3	16	16	19		
30-38	14	14	14	7	2	1	2	16	16	14		
38-60	11	9	12	7	4	3	3	17	17	16		
Расстояние 8 км от источника загрязнения												
0-10	9	12	11	3	3	7	9	10	11	23		
10-20	9	14	14	5	3	2	2	16	16	19		
20-30	10	14	14	7	4	2	3	15	15	16		
30-48	11	19	15	5	2	1	1	15	15	16		
48-66	12	25	12	5	нет	нет	2	14	13	17		
Расстояние 25 км от источника загрязнения												
10-20	8	9	16	4	4	3	4	17	17	17		
30-53	10	8	16	3	3	2	3	17	16	19		
53-60	13	10	14	5	3	1	2	18	18	17		


На рентгенограмме образца из средней части профиля (30-47 см) фиксируется обособление рефлекса в области 1, 2 нм (рис. 1), свидетельствующее о переходной стадии триоктаэдрических структур гидрослюд в смешаннослойные образования слюда-смектитового типа с тенденцией к упорядоченности.

Степень совершенства структуры и количественное содержание каолинита мало изменяются в пределах профиля, исключая илистый материал самого верхнего образца. Здесь содержание этого компонента немного снижено, и отмечается наибольшая степень разупорядочения его структуры. Важными показателями ПГМ являются отношения интенсивностей слоистых силикатов и кварца. В данном профиле содержание тонкодисперсного кварца в илистой фракции наибольшее по сравнению с ПГМ рассмотренных ниже почв.


Рис. 1. Ренген-дифрактограммы фракции менее 1 мкм дерновокарбонатной почвы, расположенной на расстоянии 2 км от источника загрязнения. Условные обозначения здесь и далее: А – образец в воздушно-сухом состоянии; Б – после сольватации этиленгликолем; В – после прокаливания при 550° в течение двух часов. Значения рефлексов выражены в ангстремах.

Профиль глинистого материала дерново-карбонатной почвы, сформировавшийся на расстоянии 5 км от источника загрязнения характеризуется небольшим содержанием фракции менее 1 мкм и слабым элювиально-иллювиальным его распределением. Для илистой фракции этого ПГМ характерны компоненты, описанные выше: каолинит (18-33%), гидрослюды ди- и триоктаэдрического типа (29-48%), смешаннослойные образования нескольких типов (24-37%), тонкодисперсный кварц и лепидокрокит в образце с глубины 20-30 см (табл. 1, 2, рис. 2). Распределение указанных минералов по профилю имеет следующие особенности. Верхний горизонт отличается повышенным содержанием в илистой фракции каолинита и тонкодисперсного кварца (табл. 2, рис. 2). Количество гидрослюд наибольшее в нижней части профиля (48%). Так же, как и в предыдущем случае, наиболее информативным остается характер распределения смешаннослойных образований. В верхних горизонтах доминируют хлорит-вермикулиты, в меньшей степени хлоритсмектиты, которые ниже по профилю сменяется слюда-смектитами.

Рис. 2. Ренген-дифрактограммы фракции менее 1 мкм дерново-карбонатной почвы, расположенной на расстоянии 5 км от источника загрязнения. 64

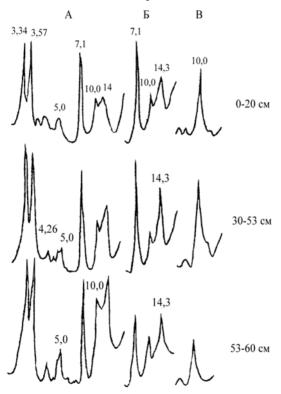

Профиль глинистого материала дерново-карбонатной почвы, сформировавшийся на расстоянии 8 км от источника загрязнения, имеет равномерное распределение фракции менее 1 мкм. По составу компонентов илистая фракция этой почвы аналогична таковой ПГМ рассмотренных выше. Однако здесь отмечается повышенное содержание гидрослюд (50-57%) триоктаэдрического типа (табл. 1, рис. 3). Количество каолинита уменьшается вниз по профилю с 25-27 до 17%. Наиболее существенные трансформации и отличия по горизонтам зафиксированы в распределении смешаннослойных образований. По мотивам переслаивания пакетов выделяется глинистый материал верхнего горизонта, в котором доминируют хлорит-вермикулиты и хлорит-смектиты. Слюда-смектиты зафиксированы как небольшая примесь.

Рис. 3. Ренген-дифрактограммы фракции менее 1 мкм дерново-карбонатн почвы, расположенной на расстоянии 8 км от источника загрязнения.

В нижней части профиля почв доминируют слюда-смектиты с низким содержанием смектитовых пакетов. Для данного ПГМ также отмечается значительная степень разупорядоченности структур всех слоистых силикатов в верхних горизонтах. Так, сумма интенсивностей рефлексов минералов в этих горизонтах в два раза ниже таковой каждого из нижележащих горизонтов, а интенсивность суммы рефлексов только слоистых силикатов – в три раза меньше.

Профиль глинистого материала дерново-карбонатной почвы, сформировавшийся на расстоянии 25 км от источника загрязнения, существенным образом отличается от всех профилей, рассмотренных выше(табл. 1-2, рис. 4). В илистой фракции резко доминирует каолинит (31-41%). Гидрослюды три- и диоктаэдрического типа составляют 40-46%, а сложные смешаннослойные образования – всего 22-25%.

Рис. 4. Рентген-дифрактограмма фракции менее 1 мкм дерново-карбонатной почвы, расположенной на расстоянии 25 км от источника загрязнения.

В отличие от ПГМ, описанных выше, в данном профиле присутствуют только хлорит-вермикулиты с примесью хлорит-смектитов, слюдасмектиты отсутствуют полностью

ЗАКЛЮЧЕНИЕ

Исследованные ПГМ техногеохимической катены имеют ряд общих черт, к числу которых относятся низкое содержание илистой фракции и однотипная парагенетическая ассоциация минералов, характерная для почв, развитых на моренных отложениях северо-запада Русской равнины (Чижикова и др., 2000).

Илистая фракция верхних горизонтов почв характеризуется значительной разупорядоченностью слоистых силикатов, в первую очередь, смешаннослойных образований, что вызывает снижение интенсивности их рефлексов. В этих же горизонтах по сравнению с остальной частью почвенного профиля отмечается повышенное содержание тонкодисперсного кварца и относительно более низкое содержание смешаннослойных образований со смектитовым пакетом.

Помимо общих черт, каждый из рассмотренных ПГМ имеет свои особенности как по распределению минеральных компонентов в пределах профиля, так и по доминированиюкакого-либо из них. Так, контрольный участок имеет ПГМ с более высоким содержанием каолинита и доминированием среди смешаннослойных образований хлоритвермикулитов.

В направлении от контрольного (незагрязненного) участка к источнику загрязнения можно отметить увеличение количества смешаннослойных образований разного типа. Наиболее близко расположенные к источнику загрязнения почвы содержат наибольшее количество смешаннослойных образований. Однако верхние горизонты обеднены смектитовой фазой. Ее количество закономерно возрастает с глубиной и обычно доминирует в образцах ниже 30 см.

Из всех перечисленных минеральных компонентов исследованных почв наиболее реакционно-способными являются смешаннослойные образования. Именно они регулируют поведение ТМ по мере их поступления. Ранее (Водяницкий и др., 2000) было установлено, что почвы обладают низкой адсорбционной способностью по отношению к цинку и меди. Причем цинк слабее удерживается почвой по сравнению с медью. Исследование минералогического состава объясняет поведение ТМ с позиций качественного и количественного содержания компонентов тонкодисперсной части почв. Ранее было показано, что техногенные выбросы, содержащие ТМ, прочно фиксируются в верхней почвенной толще до глубины 20-40 см (Зырин, 1985; Орлов, Васильевская, 1994). В нашем случае наибольшее количество подвижных форм ТМ отмечалось не с поверхности, а на глубине 10-20 см. Это объясняется тем, что здесь

увеличивается количество илистой фракции (слабое иллювиирование) и изменение типа смешаннослойных образований: хлорит-вермикулиты сменяются слюда-смектитами, способными более активно реагировать с ТМ.

СПИСОК ЛИТЕРАТУРЫ

Водяницкий Ю.Н., Большаков В.А., Сорокин С.Е., Фатеева Н.М. Техногеохимическая аномалия в зоне влияния Череповецкого металлургического комбината // Почвоведение. 1995. № 4. С. 498-507.

Водяницкий Ю.Н., Рогова О.Б., Пинский Д.Л. Применение уравнений Лэнгмюра и Дубинина-Радушкевича для описания поглощения меди и цинка дерново-карбонатной почвой // Почвоведение. 2000. № 11. С. 1391-1398.

Дончева А.В., Казаков Л.А., Калуцков В.Н. Экология и отрасли промышленности. Природный аспект. // Природные ресурсы и окружающая среда. М., 1979. Вып. 7. С. 46-59.

Калуцков В.Н. Ландшафтная индикация загрязнения природной среды металлургическим производством. Автореф. дис. ... канд. геогр. наук. М.: Изд-во МГУ, 1982. 24 с.

Мотузова Г.В. Соединение микроэлементов в почвах: системная организация, экологическое значение, мониторинг. М.: Эдиториал УРСС, 1999. 166 c.

Почвенно-экологический мониторинг и охрана почв / Отв. ред. Д.С. Орлов, В.Д. Васильевская. М.: Изд-во МГУ, 1994. 272 с.

Соколов Н.Н. Рельеф и четвертичные отложения // Природа Вологодской области. Вологда, 1957. С. 58-93.

Чижикова Н.П., Копцик Г.Н., Мурашкина М.А. Минералогический состав тонкодисперсных фракций почв конечной зоны Валдайского оледенения // Почвоведение. 2000. № 8. С. 976-988.

Mitchell R.L. Trace elements //Chemistry of the soil. NY, 1955.