УДК 631.434

МИКРОЭЛЕМЕНТЫ В ВОДНЫХ ЭКОСИСТЕМАХ РЕКИ АМУР

© 2011 г. Н. П. Чижикова¹, С. Е. Сиротский², Г. В. Харитонова², Е. В. Уткина²

¹Почвенный институт им. В.В. Докучаева Россельхозакадемии, 119017, Москва, Пыжевский пер., 7 ²Институт водных и экологических проблем ДВО РАН, 680000, Хабаровск, ул. Ким-Ю-Чена, 65 e-mail: gkharitonova@mail.ru

Рассмотрен микроэлементный состав системы вода-донные отложения-водоросли-макрофиты-ихтиофауна р. Амур. Установлены минимальные и максимальные концентрации микроэлементов в отдельных ее компонентах. Показано, что в биологических объектах содержание микроэлементов закономерно уменьшается в следующем порядке: водоросли > макрофиты > ихтиофауна. Наиболее информативным биологическим объектом аккумуляции микроэлементом в экосистеме Амура являются водоросли. Аккумуляция Fe, Mn, Zn и Cu в донных отложениях связана с образованием поверхностных комплексов катионов металлов с глинистыми минералами и с их накоплением диатомовыми водорослями.

Ключевые слова: экосистема, донные отложения, загрязнение, вода, микроэлементы, диатомовые водоросли.

ВВЕДЕНИЕ

Амур – основная водная артерия юга Дальнего Востока. Состав его воды определяет накопление и миграцию макро- и микроэлементов в почвах региона. В связи с бурным экономическим развитием Китая проблема загрязнения тяжелыми металлами бассейна Амура становится особо актуальной. Источниками загрязнения водных и наземных экосистем в бассейне р. Амур являются различные предприятия промышленности: горнорудной, топливно-энергетической, угольной, машиностроительной, химической, целлюлозно-картонной. Значительный вклад в загрязнение водных экосистем Амура вносят хозяйственно-бытовые и сточные воды больших и малых населенных пунктов, особенно находящихся в районе крупного притока Амура – р. Сунгари, бассейн которой составляет почти треть бассейна р. Амур и полностью находится на территории Китая.

Для оценки состояния и степени техногенного загрязнения экосистемы Амура тяжелыми металлами необходимо иметь представление о фоновых содержаниях того или иного элемента в ее отдельных компонентах. В эколого-геохимических исследованиях под фоновой концентрацией (фоновым содержанием) химического элемента понимается его содержание в каком-либо относительно однородном в ландшафтно-геохимическом отношении компоненте (воде, донных отложениях, почве, растениях) природного участка, не испытывающего прямого техногенного воздействия. Фоновые концентрации элементов определяются природными факторами региона: геологическим строением водосбора, наземной растительностью, почвенным покровом и климатическими условиями на водосборной площади (Förstner, Wittmann, 1983; Sparks, 2005; Sposito, 1984). Валовые концентрации химических элементов в сравниваемых средах, которые в 1.5 раза больше или меньше фоновых содержаний, типичных для данного бассейна реки, могут быть отнесены к аномальным. Уровень 1.5-кратной вариации концентраций определяемых элементов сглаживает природную вариацию распределения элементов и возможные ошибки опробования и химико-аналитических исследований (Förstner, Wittmann, 1983; Moor, Ramam, 1984).

Целью работы была оценка содержания микроэлементов в системе вода-донные отложения-водоросли-макрофиты-ихтиофауна.

ОБЪЕКТЫ И МЕТОДЫ

Отбор проб донных отложений проводили в зонах аккумуляции на участке от устья р. Сунгари до Амурского лимана. Пробы воды в Амуре отбирали ежегодно на участке от г. Благовещенск до устья реки с 1997 по 2007 гг. Объектами биогеохимического опробования послужили сестон, перифитон, макрофиты и ихтиофауна р. Амур. Сестон – взвешенные в воде планктонные микроорганизмы с примесью неорганических веществ – отбирали с помощью мелкоячеистой планктонной сетки (диаметр ячейки 0.01мм). Планктонные микроорганизмы в р. Амур представлены, главным образом, диатомовыми водорослями. Перифитон – водоросли обрастаний гравийно-галечного субстрата – отбирали методом смыва. Макрофиты Амура представлены болотоцветником стрелолистом и рдестами, ихтиофауна – частиковыми. Дополнительно были отобраны образцы осадков сточных вод (**OCB**) очистных сооружений г. Хабаровск. ОСВ – технический аналог сестона: в систему водоснабжения вода поступает непосредственно из р. Амур. Для сравнения были использованы данные микроэлементного состава 1 м керна донных отложений оз. Удыль (озеро соединено с Амуром протокой Ухта, накопление донных отложений (**ДО**) ~10 тыс. лет). Анализ керна проводился по слоям через каждые 5 см.

Анализ микроэлементного состава образцов проводили эмиссионно-спектральным методом (ЭСА) на приборах СТЭ-1 и ДФС-8, методами масс-спектрометрии (ICP) на приборе ICP-MS ELAN DRC II и рентген-флюоресцентного энергодисперсионного анализа (РФА) на приборе VRA-30. Анализ воды методом ЭСА проводили в сухом остатке. Сухой остаток воды получали выпариванием в кварцевых стаканах на водяной бане, воду предварительно фильтровали через бумажный фильтр "белая лента". В качестве нейтрального наполнителя использовали х.ч. Al₂O₃ (Михалев и др., 1999). В методе ІСР предварительная подготовка образцов воды к анализу включала фильтрацию и консервацию. Анализ состава образцов ДО, водорослей (сестон, перифитон), макрофитов и ихтиофауны проводили методами ЭСА и РФА. Образцы предварительно высушены при температуре 105°С и озолены в муфельной печи при 450°С. Для донных отложений проведена дробная пептизация образцов на воднопептизируемый (ВПИ) и агрегированный (АИ) илы по методу Н.И. Горбунова (Чижикова и др., 2004).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Обобщенные данные микроэлементного состава воды р. Амур представлены в табл. 1. Содержание марганца и железа может превышать в зависимости от фазы гидрологического режима р. Амур и водности года исследований средние (кларковые) содержания этих элементов в речных водах более чем в полтора раза. Бюллетень Почвенного института им. В.В. Докучаева. 2011. Вып. 67

Таблица 1. Динамика микроэлементного состава воды р. Амур, мкг/дм³

Элемент	Речные воды *	1997 г.	1998 г.	2000 г.	2007 г.	2007 г.
		июнь-	февраль-	март	июль	август
		август	март			
		<i>n</i> = 45	<i>n</i> = 23	<i>n</i> = 17	<i>n</i> = 106	<i>n</i> = 107
			ЭСА		IC	CP
Sc	0.001-0.01	_	-	0.15	0.68	0.69
Ti	3–5	25	3	43	2	1
V	0.5-1	2.3	0.7	1.4	0.8	0.6
Cr	1	3.3	1.0	1.5	1.6	2.7
Mn	7–10	42	52	47	15	5
Fe	410-670	1640	230	1040	130	220
Co	0.2-0.3	1.4	0	0.4	0	0
Ni	0.3-2.5	2.2	1.4	0.8	0.8	0.6
Cu	3–7	0.9	1.9	3.7	1.8	3.0
Zn	15-20	4.5	1.5	0.2	7.0	5.6
Sr	50-70	23	-	15	56	29
Zr	0.8-2.6	0.4	0.2	1.7	0.1	0.1
Мо	0.5-1	0.1	0.2	0.1	0.6	0.2
Sn	0.009-0.04	0.14	0.05	_	1.22	0.14
Ba	10-20	33	_	10	14	6
Pb	1–3	1.0	1.7	0.3	0.3	0.2

* Livingston, 1963.

Содержание Cu, Zn, Sr и Zr существенно ниже этих показателей, остальные элементы находятся в пределах 1.5-кратных изменений средних (кларковых) содержаний микроэлементов в речных водах.

Некоторые весьма существенные различия в результах анализа воды, полученные методами ЭСА и ICP, связаны с тем, что ЭСА является полуколичественным, соответственно ICP предпочтительнее. Широкое использование ЭСА для решения отдельных геохимических задач связано с его экспрессностью и существенно меньшей по сравнению с ICP стоимостью. Поэтому для получения сравнимых данных при анализе микроэлементного состава в системе вода–донные отложения–водоросли (сестон, перифитон)– макрофиты–ихтиофауна был использован именно ЭСА.

Анализ микроэлементного состава донных отложений р. Амур, оз. Удыль, водорослей (сестон, перифитон), осадка сточных вод

Бюллетень Почвенного института им. В.В. Докучаева. 2011. Вып. 67

Амур, мг/кг золы. Над чертой – средние значения, под чертой – min-max									
Эле- мент	011 *	до	Удыль ЛО	OCB	Сестон	Пери-	Мак- рофиты	Ихтио- фауна	
Menn		<i>n</i> = 51	n = 25	<i>n</i> = 6	<i>n</i> = 24	n = 30	n = 14	n = 39	
G	10	7	7	6	6	5	5	4	
Sc	10	4-10	4-10	6	4-10	4-10	4-6	4	
		3600	2000	2000	2000	2000	600	10	
Ti	4500	1000 - 6000	$\frac{2000}{3000}$	$\frac{2000}{3000}$	$\frac{1000}{3000}$	1000 - 4000	100 - 2000	10–30	
v	120	<u>70</u>	<u>80</u>	<u>80</u>	<u>80</u>	<u>80</u>	<u>30</u>	<u>4</u>	
v	150	40-100	60–100	60–100	30-100	40–100	3-80	3–30	
C.	100	<u>50</u>	<u>30</u>	<u>37</u>	<u>30</u>	<u>37</u>	7	<u>6</u>	
CI	100	40-100	20–40	30–40	10-100	20-60	6–10	6–10	
	< - 0	<u>660</u>	<u>540</u>	2300	2100	<u>1500</u>	<u>1600</u>	<u>90</u>	
Mn	670	300- 1000	100– 800	600– 10000	400 - 6000	400 - 6000	300- 6000	10-300	
Fo**	1 65	<u>2–4</u>	<u>2-5</u>	<u>2-5</u>	<u>4–7</u>	<u>3–6</u>	<u>1-2</u>	<u>0.1</u>	
1.6	4.05	1–6	2–6	1–6	1-10	1-10	1–3	0.001 - 1	
Co	20	<u>8</u>	<u>8</u>	<u>8</u>	<u>9</u>	<u>8</u>	<u>4</u>	<u>4</u>	
CO	20	1-20	4-10	4-20	4-30	4–30	4–6	4	
NI:	05	<u>28</u>	<u>20</u>	<u>35</u>	<u>19</u>	<u>25</u>	<u>6</u>	<u>4</u>	
111	95	10-40	10-30	20-60	6–30	6–60	4-10	4	
Cu	57	<u>20</u>	<u>20</u>	200	<u>50</u>	<u>40</u>	<u>30</u>	<u>20</u>	
Cu	57	10-40	20	100-300	20-100	20-80	20-100	20-30	
7	20	<u>80</u>	<u>60</u>	410	220	<u>170</u>	<u>14</u>	120	
Zn	80	0-300	30-100	300-600	30-800	10-800	6–60	6-300	
G	450	160	100	100	100	100	300	100	
Sr	450	100-300	100	100	100-200	100	100-400	100-200	
7.	200	370	200	200	140	100	<u>30</u>	4	
Zr	200	200-600	100-300	200	60–200	60–200	4-80	3–4	
м.	2	0.8	1.6	0.8	1.0	2.1	1.0	0.6	
MO	2	0.4–2	0.6–3	0.6-1	0.6–3	0.6–3	0.6–2	0.6–1	
G.,	10	3	<u>3</u>	2.3	<u>3</u>	2.1	0.8	0.6	
Sn	10	1-10	1–4	1–4	1-8	0.6-8	0.6–2	0.6	
De	000	<u>520</u>	<u>300</u>	100	240	180	170	<u>60</u>	
Ба	800	300-800	100-400	100	60-600	60-600	60–300	60	
DL	20	20	<u>13</u>	25	<u>33</u>	<u>20</u>	<u>14</u>	7	
РD	20	10–40	6–20	20–40	10-100	6-80	6-80	6–10	

Габлица	2.	Микр	ээлем	ентны	йс	остав	ДО	и бис	логич	ieci	ких (объек	тов р	•
Амур, мг/і	٢Г	золы.	Над ч	ертой -	- c	редни	е зна	чения	, под	чер	той ·	– min-	-max	
	1 1			7	7		~							

* Осадочные породы, Виноградов, 1962.

** Содержание Fe. %.

(ОСВ), макрофитов и ихтиофауны (табл. 2) проведен в сравнении со средними (кларковыми) содержаниями элементов в осадочных породах (глины и сланцы) по А.П. Виноградову (1962).

Донные отложения поверхностных водотоков традиционно используются в качестве индикатора для выявления состава, интенсивности и масштаба техногенного загрязнения.

Согласно данным табл. 2, речные и озерные донные отложения характеризуется близким микроэлементным составом. Содержание микроэлементов в ДО не превышают средних содержаний элементов в осадочных породах. Содержание Cr, Co Zn, Sr и Ba более чем в полтора раза ниже данного показателя в осадочных породах. В ОСВ отмечается наибольшее – более чем 1.5-кратное превышение содержания Mn, Cu и Zn. Близкими концентрациями указанных элементов характеризуется и сестон. Дополнительно в составе сестона происходит почти 1.5-кратное накопление свинца по сравнению с осадочными породами.

В биологических объектах содержание микроэлементов закономерно уменьшается в ряду: водоросли (сестон, перифитон) > макрофиты > ихтиофауна. В макрофитах наблюдается некоторое накопление по сравнению с сестоном Sr. Таким образом, наиболее информативным биологическим объектом аккумуляции тяжелых металлов в экосистеме Амура является сестон.

Накопление в ОСВ и сестоне Fe, Mn, Zn и Cu позволяет предполагать возможность накопления этих элементов в тонкодисперсных фракциях донных отложений. Анализ микроэлементного состава ВПИ и АИ донных отложений подтвердил более чем 1.5кратное по сравнению с осадочными породами накопление Mn, Zn и Pb (табл. 3). Дополнительно в составе тонкодисперсных фракций ДО отмечается более чем 1.5-кратное накопление Fe. Повышение содержания Си в ВПИ и АИ отмечается как тенденция. Аккумуляция тяжелых металлов тонкодисперсными компонентами ДО может быть связана с образованием поверхностных комплексов катионов тяжелых металлов с глинистыми минералами смектитгидрослюдистого состава (Чижикова и др., 2004; Kharitonova et al., 2006). Следовательно, для характеристики накопления в ДО тяжелых металлов необходимым этапом подготовки образцов к анализу является их фракционирование с выделением тонкодисперсных фракций – ВПИ и АИ.

Таблица 3. Микроэлементный состав тонкодисперсных фракций донных отложений р. Амур, мг/кг (n = 8). Над чертой – данные ЭСА, под чертой – данные РФА

Элемент	0П*	ДО	ВПИ	АИ	00
Ti	4500	3900/5000	4000/5500	5200/6700	3600/4400
V	130	65/-	82/-	92/-	65/-
Cr	100	54/-	90/-	125/-	36/-
Mn	670	540/900	990/1800	1100/1700	490/560
Fe**	4.6	1 - 3/2.4	3-6/8.2	4-8/10.4	1 - 3/2.0
Co	20	14/	16/-	20/-	10/-
Ni	95	30/24	25/52	29/59	10/24
Cu	57	20/27	28/41	24/40	18/20
Zn	80	80/90	140/146	150/180	60/59
Sr	450	220/274	160/164	100/100	2280/309
Zr	200	450/367	200/141	200/176	440/371
Мо	2	1.6/-	1.6/-	1.8/-	1.1/-
Sn	10	1.8/-	2.1/-	1.5/-	1.5/-
Ва	800	380/-	250/-	260/-	480/-
Pb	20	25/30	31/17	36/17	25/21

Примечание. ОП – осадочные породы, ОО – остаток от отмучивания илов, прочерк – элемент данным методом не определяется.

* Виноградов, 1962.

** Содержание Fe, %.

ЗАКЛЮЧЕНИЕ

Для оценки региональных фоновых содержаний микроэлементов в водах р. Амур и почвах, сформированных на на озерноаллювиальных отложениях, рассмотрен микроэлементный состав системы вода-донные отложения-водоросли-макрофитыихтиофауна". Установлены минимальные и максимальные концентрации микроэлементов в отдельных ее компонентах. Показано, что в биологических объектах содержание микроэлементов закономерно уменьшается в ряду водоросли > макрофиты > ихтиофауна. Наиболее информативным биологическим объектом аккумуляции микроэлементом в экосистеме Амура являются водоросли. Аккумуляция Fe, Mn, Zn и Cu в донных отложениях связана с образованием поверхностных комплексов катионов металлов с глинистыми минералами и с их накоплением диатомовыми водорослями. Для характеристики накопления в донных отложениях тяжелых металлов необходимым этапом подготовки образцов к анализу является их фракционирование с выделением тонкодисперсных фракций.

СПИСОК ЛИТЕРАТУРЫ

1. Виноградов А.П. Средние содержания химических элементов в главных типах изверженных горных пород земной коры // Геохимия. 1962. № 7. С. 555–571.

2. *Михалев Ю.А., Сиротский С.Е., Харитонова Г.В.* Рентгенфлуоресцентное определение тяжелых металлов в природной воде // Лаб. новости ДВ. 1999. № 1. С. 18.

3. Чижикова Н.П., Харитонова Г.В., Матюшкина Л.А., Сиротский С.Е. Минералогический состав тонкодисперсной части почв среднего и нижнего Приамурья, донных отложений и взвесей реки Амур // Почвоведение. 2004. № 8. С. 1000–1012.

4. *Förstner U. and Wittmann G.T.W.* Metal Pollution in the Aquatic Environment. Springer, 1983. 486 p.

5. *Kharitonova G.V., Manucharov A.S., Kirichenko A.V., Pavlyukov I.A.* Electron Microscopy of Clay Minerals Treated with Salt Solutions // Eurasian Soil Science. 2006. V. 39. Suppl. 1. P. S69–S77.

6. Livingston D.A. Chemical composition of rivers and lakes: Date of geochemistry // U.S. Geol. Survey Profess. 1963. Papper 440G. P. G1–G64.

7. *Moor J., Ramamoorthy S.* Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment. N. Y.: Springer, 1984. 288 p.

8. *Sparks D.L.* Toxic metals in the environment: the role of surfaces // Elements. 2005. V. 1. P. 193–197.

9. *Sposito G*. The surface chemistry of soils. N.Y.: Oxford Univ. Press, 1984. 234 p.

УДК 631.4

РОЛЬ РАСТВОРИМЫХ СОЛЕЙ В АГРЕГАЦИИ ГЛИНИСТЫХ МИНЕРАЛОВ

©2011 г. Н. П. Чижикова¹, Г. В. Харитонова², Н. С. Коновалова³

¹Почвенный институт им. В.В. Докучаева Россельхозакадемии, 119017, Москва, Пыжевкий пер., 7 ² Институт водных и экологических проблем ДВО РАН, 680000, Хабаровск, ул. Ким-Ю-Чена, 65 e-mail: gkharitonova@mail.ru ³ Институт тектоники и геофизики ДВО РАН, 680000, Хабаровск, ул. Волочаевская, 146

Методами оптической и электронной микроскопии изучено поведение глинистых минералов (смектита и каолинита) под влиянием растворимых солей. Это взаимодействие приводит к образованию глинисто-солевых микроагрегатов. Упаковка частиц, размеры, форма и оптические свойства глинисто-солевых микроагрегатов зависят от природы минерала и свойств соли, участвующих в агрегации.

Ключевые слова: агрегация; глинистые минералы; солевые растворы; оптическая и электронная микроскопия.

ВВЕДЕНИЕ

Растворимые соли взаимодействуют с глинистыми минералами. Знание механизмов взаимодействия позволяет оценить мобильность и биодоступность того или иного компонента в почвах. При исследовании процессов взаимодействия глинистых минералов с растворимыми солями крайне перспективно комплексное использование методов оптической и электронной микроскопии (Турсина и др., 1980; Харитонова и др., 2002; Шоба и др., 1983; Shahidzadeh-Bonn et al., 2008). Первая группа методов позволяет получать экспресс-характеристику возможных эффектов на уровне микроагрегатов. Вторая относится к высоко локальным методам анализа и позволяет изучать процессы, происходящие на поверхности кристаллитов глинистых минералов. Целью работы является анализ поведения глинистых минералов (смектита и каолинита) при взаимодействии с растворимыми солями.

ОБЪЕКТЫ И МЕТОДЫ

Для исследования использованы образцы бентонитовой глины (Туркмения, Огланлы) и каолина (Украина, ст. Просяновская). Бентонитовая глина содержит минерал смектитовой группы и незначительную примесь кристобаллита, кварца и кальцита. Каолин состоит из каолинита. Далее смектит и каолинит соответственно. Обработку ГМ проводили 1 н. растворами солей NaCl, MgCl₂, KCl, ZnCl₂, RbCl, SrCl₂. Поскольку хлорид Pb (II) малорастворим, в эксперименте использовали растворимую соль Pb(CH₃COO)₂. Исходные минералы предварительно растирали до размера 0.074 мм. Далее 10 г образца заливали 200 мл 1 н. раствора соответствующей соли и в течение 6 ч перемешивали на ротаторе, после чего отфильтровывали, образец сушили на воздухе. Оптическое изучение (ОМ) образцов глинистых минералов проводили на микроскопе "Axioplan 2" (Карл Цейсс, Германия), а электронномикроскопическое исследование (РЭМ) на растровом электронном микроскопе "EVO 40 HV" (Карл Цейсс, Германия). Образцы для анализа РЭМ подготовили методом суспензии в C₂H₅OH и пиридине (SrCl₂- и ZnCl₂-образцы) с последующим высушиванием и напылением Au. Для анализа фаз, содержащих Zn, Rb, Sr и Pb, был использован детектор обратно рассеянных электронов (QBSдетектор). Валовые содержания макро- и микроэлементов в образцах глинистые минералы определены на рентген-флюоресцентном энергодисперсионном анализаторе "TEFA-III" (ORTEC, CША) (Савичев, Сорокин, 2002).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сопряженный анализ ГМ методами ОМ и РЭМ свидетельствует об изменении их организации после взаимодействия с растворами солей и образовании глинисто-солевых микроагрегатов. Наиболее полную картину по сравнению с ОМ дают данные РЭМ, но использование ОМ позволяет оценить масштаб происходящих на микроуровне процессов. Рассмотрим полученные данные в по-

рядке выраженности наблюдаемых эффектов для минералов (смектита > каолинита) и растворимых солей исследуемого ряда $(KCl > NaCl > MgCl_2 > Pb(CH_3COO)_2 > ZnCl_2 \approx RbCl > SrCl_2)$. Coгласно данным OM, наибольшие изменения в результате взаимодействия ГМ с растворимыми солями проявляются при съемке образцов в скрещенных николях. Исходные минералы при данной механической дисперсности в проходящем свете полупрозрачные, в поляризованном свете – молочно-белые. При взаимодействии смектита с растворами NaCl и MgCl₂ в поляризованном свете были обнаружены глинисто-солевые микроагрегаты яркой радужнокольцевой окраски размером до 0.05 мм. Их образование подтверждается данными РЭМ. Для NaCl- и MgCl₂-смектита четко зафиксировано образование микроагрегатов с радиальнолепестковой упаковкой частиц (рис. 1д). Для необработанного солями смектита характерны глобулярные микроагрегаты с нерегулярной упаковкой кристаллитов (рис. 1*a*).

Для NaCl-смектита кроме микроагрегатов с радиальнолепестковой упаковкой частиц (тип А) зафиксировано образование еще одного типа микроагрегатов – В. Микроагрегаты NaClсмектита типа В характеризуются спирально-винтовой упаковкой частиц (упаковка плоскость-плоскость со сдвигом) и большими трубчатыми полостями диаметром до 2 мкм (рис. 16). В основании микроагрегатов типа А находятся плотноупакованные пластинчатые элементы структуры. Согласно данным РЭМ, упакованы они по типу плоскость-плоскость без сдвига, что вызывает большие напряжения микроструктуры и, соответственно, образование радиально-лепестковой скульптуры поверхности микроагрегатов для снятия напряжения. Глинисто-солевые микроагрегаты KClсмектита (РЭМ) характеризуются трехмерной ажурной упаковкой частиц (рис. 1в). Частицы упакованы как по типу плоскостьплоскость с образованием столбчатых со сдвигом элементов структуры, так и по типу ребро-ребро с образованием плоских «гексагональных» микроагрегатов.

В образце Pb(CH₃COO)₂-смектита обнаружены яркие золотисто-желтые в поляризованном свете и прозрачные в проходящем свете микроагрегаты размером до 20 мкм. Кристаллы соли Pb(CH₃COO)₂ в условиях съемки игольчатые серебристо-серо-

Рис. 1. Микроструктура образцов смектита. Обозначения здесь и далее: a – исходный, необработанный солями; образцы, обработанные солями: δ – NaCl; e – KCl; e – RbCl; ∂ – MgCl₂; e – Pb(CH₃COO)₂; \mathcal{K} – ZnCl₂; 3 – SrCl₂ (PЭM, съемка с помощью SE-детектора; на двойных фотографиях слева – SE-детектор, справа – QBS-детектор).

синие. Множественные плоские гексагональные микроагрегаты обнаружены и при РЭМ анализе образцов (рис. 1*e*).

Морфология и электронограммы микроагрегатов (Харитонова и др., 2002) свидетельствуют об упаковке кристаллитов минерала по типу ребро-ребро в плоскости и плоскость-плоскость.

В образце ZnCl₂-смектит глинисто-солевые микроагрегаты (слоисто-пластинчатые, округлые в основании) обнаружены только методами РЭМ при съемке с помощью QBS-детектора (рис. 1*ж*). Кристаллиты минерала в этих микроагрегатах упакованы по типу ребро–ребро в плоскости и плоскость – плоскость.

Глинисто-солевые микроагрегаты RbCl-смектита плоские, округлые, размером до 2 мкм (рис. 1*г*). SrCl₂-смектит характеризуется микроагрегатами с угловатой структурой, плотно упакованными по типу плоскость–плоскость (рис. 1*3*).

Следует отметить, что агрегация кристаллитов смектита при его взаимодействии с растворами солей тяжелых металлов существенно иная, чем при взаимодействии с растворами NaCl, MgCl₂ и KCl. Ни в одном из перечисленных вариантов не наблюдается образование микроагрегатов с упаковкой частиц типа A и B. Образуемые глинисто-солевые микроагрегаты смектита при взаимодействии с растворами солей тяжелых металлов имеют более плотную упаковку одного какого-либо типа: либо ребро-ребро, либо плоскость-плоскость.

При взаимодействии солей исследуемого ряда с каолинитом методами ОМ глинисто-солевые микроагрегаты обнаружены только для NaCl-каолинита. Микроагрегаты NaCl-каолинита единичные, в поляризованном свете яркой радужной окраски, столбчатые до 20 мкм в диаметре. Методами РЭМ в образце NaCl-каолинита также обнаружены столбчатые микроагрегаты (до 1 мкм в диаметре и до 2 мкм высотой) и их ансамбли размером до 10 мкм (рис. 2δ). Упаковка частиц в микроагрегатах плоскость–плоскость. Образец исходного, не обработанного солями, каолинита (рис. 2a) состоит из отдельных пластинчатых кристаллитов и агрегатов "идеально пористой" архитектуры с упаковкой частиц плоскость–ребро (Van Olphen, Fripiat, 1979).

Рис. 2. Микроструктура образцов каолинита.

Бюллетень Почвенного института им. В.В. Докучаева. 2011. Вып. 67

Для KCl- и RbCl-каолинита также характерна упаковка частиц плоскость–плоскость (микроагрегаты до 1 мкм в диаметре и до 2 мкм высотой, толщина частиц ~ 80 нм). По сравнению с NaCl и KCl взаимодействие RbCl с каолинитом довольно слабое (рис. 2*б*, *в*, *г*).

В образце MgCl₂-каолинит методами РЭМ обнаружены глинисто-солевые микроагрегаты с трехмерной ажурной упаковкой частиц (рис. 2 ∂). Частицы упакованы как по типу плоскостьплоскость с образованием столбчатых элементов структуры, так и по типу ребро–ребро с образованием "гексагональных" колец. РЭМ анализ Pb(CH₃COO)₂-каолинита показал наличие в образце множественных плоских гексагональных микроагрегатов из кристаллитов каолинита, агрегированных по типу ребро–ребро (рис. 2e), и их текстурированных агрегатов. В текстурированных микроагрегатах Pb(CH₃COO)₂-каолинита упаковка плоскость– плоскость происходит со сдвигом, число частиц в стопке не превышает 7.

Микроагрегаты ZnCl₂-каолинита рыхлые "веерообразные", состоят из отдельных гексагональных пластин размером до 1-2 мкм в диаметре (рис. $2\mathcal{H}$). Кристаллиты минерала в этих микроагрегатах упакованы по типу ребро–ребро как в плоскости, так и под некоторым углом и плоскость–плоскость. Глинисто-солевые новообразования SrCl₂-каолинита формируются преимущественно на кристаллах соли, они немногочисленны и слабо выражены (рис. 23).

Рентген-флюоресцентный энергодисперсионный анализ (таблица) показал, что исходные глинистые минералы не содержат тяжелых металлов за исключением Sr, который в следовых количествах присутствует в смектите. Обработка глинистых минералов растворами солей ZnCl₂, RbCl, SrCl₂ и Pb(CH₃COO)₂ приводит к поглощению (адсорбции за счет реакций ионного обмена) и удержанию (за счет физической адсорбции соли) катионов тяжелых металлов. Количество сорбированных глинистыми минералами катионов из растворов равной концентрации существенно различается, изменяется от ~10 до ~100 ммоль/100 г и зависит от природы минерала, свойств соли и соответствующих катионов, участвующих во взаимодействии. Так, смектит сорбирует почти в два раза больше катионов, чем каолинит.

Бюллетень Почвенного института им. В.В. Докучаева. 2011. Вып. 67

Образец	Na	Mg	K	Zn	Rb	Sr	Pb
Смектит							
(исходный)	36.8	75.5	4.3	0	0	0.5	0
NaCl	55.2	63.0	4.3	0	0	0.4	0
MgCl ₂	9.7	134.0	4.5	0	0	0.4	0
KČl	<6.5	34.3	125.9	0.1	0	0.1	0
ZnCl ₂	58.1	63.5	35.3	53.7	0.1	0.2	0
RbCl	<6.5	36.6	1.6	0.1	26.0	0.2	0
SrCl ₂	<6.5	45.7	1.2	0	0	11.7	0
Pb(CH ₃ COO) ₂	17.7	57.8	2.1	0	0	0.5	107.2
Каолинит							
(исходный)	7.4	26.8	2.1	0	0	0	0
NaCl	15.8	23.0	20.9	0	0.1	0	0
MgCl ₂	16.5	57.8	22.3	0	0.1	0	0
KCl	<6.5	12.8	50.2	0	0.1	0	0
ZnCl ₂	34.2	22.8	2.6	44.6	0	0	0
RbCl	<6.5	9.0	19.8	0	15.0	0	0
SrCl ₂	<6.5	8.4	23.1	0	0.1	8.6	0
Pb(CH ₃ COO) ₂	13.2	26.3	0.4	0	0.2	0	47.4

Валовое содержание элементов в глинистых минералах, обработанных 1 н. растворами соответствующих солей, ммоль/100 г

Максимум сорбируемости отмечается для свинца – валовое содержание Pb в смектите и каолините после обработки солью составляет ~100 и ~50 ммоль/100 г соответственно. Близкими величинами поглощения из 1 н. раствора KCl характеризуется калий, катионы которого имеют близкий радиус с катионами свинца – 1.33 и 1.32 Å соответственно.

Валовые содержания магния после обработки смектита и каолинита 1 н. раствором $MgCl_2$ также возрастают до ~100 и ~50 ммоль/100 г соответственно. Но с учетом валового содержания магния в исходных минералах, его поглощение существенно меньше ~60 и ~30 ммоль/100 г соответственно.

Минимум сорбируемости отмечается для стронция ~10 ммоль/100 г. Поглощение катионов тяжелых металлов глинистыми минерами из 1 н. растворов соответствующих солей в ряду $Pb^{2+} \ge Zn^{2+} > Rb^+ > Sr^{2+}$ уменьшается. Причем если для каолинита поглощение Pb и Zn близкое ~50 ммоль/100 г, то для смектита сорбируемость Zn существенно ниже Pb ~50 и ~100 ммоль/100 г соответственно. Меньшая сорбируемость цинка смектитом по сравнению с катионами свинца, возможно, связана с гидролизом Zn^{2+} до ZnOH⁺, катализируемого смектитом (Ma, Uren, 1998).

ЗАКЛЮЧЕНИЕ

Методами оптической и электронной микроскопии изучено взаимодействие глинистых минералов (каолинита и смектита) с 1 растворами NaCl, MgCl₂, KCl, ZnCl₂, RbCl, SrCl₂ и H. Pb(CH₃COO)₂. Показано, что при взаимодействии глинистых минералов с растворами указанных солей образуются глинистосолевые микроагрегаты. Выраженность процесса образования глинисто-солевых микроагрегатов уменьшается в ряду $KCl>NaCl>MgCl_2 > Pb(CH_3COO)_2 > ZnCl_2 \approx RbCl > SrCl_2$. Упаковка частиц, размеры, форма и оптические свойства образуемых глинисто-солевых микроагрегатов зависят от природы минерала и свойств соли, участвующих во взаимодействии.

СПИСОК ЛИТЕРАТУРЫ

1. *Савичев А.Т., Сорокин С.Е.* Рентген-флюоресцентный энергодисперсионный анализ макроэлементов в почвах с использованием реперного элемента // Почвоведение. 2002. № 12. С. 1452–1457.

2. *Турсина Т.В., Ямнова И.А., Шоба С.А.* Опыт сопряженного поэтапного морфоминералогического и химического изучения состава и организации засоленных почв // Почвоведение. 1980. 1980. № 2. С. 30–43.

3. Харитонова Г.В., Землянухин В.Н., Манучаров А.С., Черноморченко Н.И. Электронно-микроскопическое исследование Pb²⁺и Zn²⁺-насыщенных глинистых минералов // Тихоокеанская геология. 2002. Т. 21. № 3. С. 107–118.

4. Шоба С.А., Турсина Т.В., Ямнова И.А. Растровая электронная микроскопия солевых новообразований почв // Науч. докл. высш. школы. Биол. науки. 1983. № 3. С. 91–98.

 Ma Y.B., Uren N.C. Dehydration, diffusion and entrapment of zinc in bentonite // Clays and Clay Minerals. 1998. V. 46. No 2. P. 132-138.
Shahidzadeh-Bonn N., Rafaï S., Bonn D., Wegdam G. Salt crystallization during evaporation: impact of interfacial properties // Langmuir. 2008. V. 24. P. 8599–8605.

7. *Van Olphen H., Fripiat J.J.* Data Handbook for Clay Materials and other Non-metallic Minerals. Oxford–New York–Toronto–Sydney–Paris–Frankfurt: Pergamon Press, 1979. 346 p.