УДК 631.434

МИКРОЭЛЕМЕНТЫ В ВОДНЫХ ЭКОСИСТЕМАХ РЕКИ АМУР

© 2011 г. Н. П. Чижикова¹, С. Е. Сиротский², Г. В. Харитонова², Е. В. Уткина ²

¹Почвенный институт им. В.В. Докучаева Россельхозакадемии, 119017, Москва, Пыжевский пер., 7
²Институт водных и экологических проблем ДВО РАН, 680000, Хабаровск, ул. Ким-Ю-Чена, 65
e-mail: gkharitonova@mail.ru

Рассмотрен микроэлементный состав системы вода—донные отложения—водоросли—макрофиты—ихтиофауна р. Амур. Установлены минимальные и максимальные концентрации микроэлементов в отдельных ее компонентах. Показано, что в биологических объектах содержание микроэлементов закономерно уменьшается в следующем порядке: водоросли > макрофиты > ихтиофауна. Наиболее информативным биологическим объектом аккумуляции микроэлементом в экосистеме Амура являются водоросли. Аккумуляция Fe, Mn, Zn и Cu в донных отложениях связана с образованием поверхностных комплексов катионов металлов с глинистыми минералами и с их накоплением диатомовыми водорослями.

Ключевые слова: экосистема, донные отложения, загрязнение, вода, микроэлементы, диатомовые водоросли.

ВВЕДЕНИЕ

Амур – основная водная артерия юга Дальнего Востока. Состав его воды определяет накопление и миграцию макро- и микро- элементов в почвах региона. В связи с бурным экономическим развитием Китая проблема загрязнения тяжелыми металлами бассейна Амура становится особо актуальной. Источниками загрязнения водных и наземных экосистем в бассейне р. Амур являются различные предприятия промышленности: горнорудной, топливно-энергетической, угольной, машиностроительной, химической, целлюлозно-картонной. Значительный вклад в загрязнение водных экосистем Амура вносят хозяйственно-бытовые и сточные воды

больших и малых населенных пунктов, особенно находящихся в районе крупного притока Aмура - p. Сунгари, бассейн которой составляет почти треть бассейна p. Aмур и полностью находится на территории Kитая.

Для оценки состояния и степени техногенного загрязнения экосистемы Амура тяжелыми металлами необходимо иметь представление о фоновых содержаниях того или иного элемента в ее отдельных компонентах. В эколого-геохимических исследованиях под фоновой концентрацией (фоновым содержанием) химического элемента понимается его содержание в каком-либо относительно однородном в ландшафтно-геохимическом отношении компоненте (воде, донных отложениях, почве, растениях) природного участка, не испытывающего прямого техногенного воздействия. Фоновые концентрации элементов определяются природными факторами региона: геологическим строением водосбора, наземной растительностью, почвенным покровом и климатическими условиями на водосборной площади (Förstner, Wittmann, 1983; Sparks, 2005; Sposito, 1984). Валовые концентрации химических элементов в сравниваемых средах, которые в 1.5 раза больше или меньше фоновых содержаний, типичных для данного бассейна реки, могут быть отнесены к аномальным. Уровень 1.5-кратной вариации концентраций определяемых элементов сглаживает природную вариацию распределения элементов и возможные ошибки опробования и химико-аналитических исследований (Förstner, Wittmann, 1983; Moor, Ramam, 1984).

Целью работы была оценка содержания микроэлементов в системе вода-донные отложения-водоросли-макрофиты-ихтиофауна.

ОБЪЕКТЫ И МЕТОДЫ

Отбор проб донных отложений проводили в зонах аккумуляции на участке от устья р. Сунгари до Амурского лимана. Пробы воды в Амуре отбирали ежегодно на участке от г. Благовещенск до устья реки с 1997 по 2007 гг. Объектами биогеохимического опробования послужили сестон, перифитон, макрофиты и ихтиофауна р. Амур. Сестон — взвешенные в воде планктонные микроорганизмы с примесью неорганических веществ — отбирали с помощью мелкоячеистой планктонной сетки (диаметр ячейки 0.01мм). Планктонные микроорганизмы в р. Амур представлены,

главным образом, диатомовыми водорослями. Перифитон — водоросли обрастаний гравийно-галечного субстрата — отбирали методом смыва. Макрофиты Амура представлены болотоцветником стрелолистом и рдестами, ихтиофауна — частиковыми. Дополнительно были отобраны образцы осадков сточных вод (**OCB**) очистных сооружений г. Хабаровск. ОСВ — технический аналог сестона: в систему водоснабжения вода поступает непосредственно из р. Амур. Для сравнения были использованы данные микроэлементного состава 1 м керна донных отложений оз. Удыль (озеро соединено с Амуром протокой Ухта, накопление донных отложений (**ДО**) ~10 тыс. лет). Анализ керна проводился по слоям через каждые 5 см.

Анализ микроэлементного состава образцов проводили эмиссионно-спектральным методом (ЭСА) на приборах СТЭ-1 и ДФС-8, методами масс-спектрометрии (ICP) на приборе ICP-MS ELAN DRC II и рентген-флюоресцентного энергодисперсионного анализа (РФА) на приборе VRA-30. Анализ воды методом ЭСА проводили в сухом остатке. Сухой остаток воды получали выпариванием в кварцевых стаканах на водяной бане, воду предварительно фильтровали через бумажный фильтр "белая лента". В качестве нейтрального наполнителя использовали х.ч. Al₂O₃ (Михалев и др., 1999). В методе ІСР предварительная подготовка образцов воды к анализу включала фильтрацию и консервацию. Анализ состава образцов ДО, водорослей (сестон, перифитон), макрофитов и ихтиофауны проводили методами ЭСА и РФА. Образцы предварительно высушены при температуре 105°C и озолены в муфельной печи при 450°C. Для донных отложений проведена дробная пептизация образцов на воднопептизируемый (ВПИ) и агрегированный (АИ) илы по методу Н.И. Горбунова (Чижикова и др., 2004).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Обобщенные данные микроэлементного состава воды р. Амур представлены в табл. 1. Содержание марганца и железа может превышать в зависимости от фазы гидрологического режима р. Амур и водности года исследований средние (кларковые) содержания этих элементов в речных водах более чем в полтора раза.

Таблица 1. Динамика микроэлементного состава воды р. Амур, мкг/дм³

	динамика мик			тава воды	$p. \Lambda myp,$	икі/ди		
Элемент	Речные воды *	1997 г.	1998 г.	2000 г.	2007 г.	2007 г.		
		июнь-	февраль-	март	июль	август		
		август	март					
		n = 45	n = 23	n = 17	n = 106	n = 107		
		ЭСА			IC	ICP		
Sc	0.001-0.01	_	_	0.15	0.68	0.69		
Ti	3–5	25	3	43	2	1		
V	0.5-1	2.3	0.7	1.4	0.8	0.6		
Cr	1	3.3	1.0	1.5	1.6	2.7		
Mn	7–10	42	52	47	15	5		
Fe	410–670	1640	230	1040	130	220		
Co	0.2-0.3	1.4	0	0.4	0	0		
Ni	0.3-2.5	2.2	1.4	0.8	0.8	0.6		
Cu	3–7	0.9	1.9	3.7	1.8	3.0		
Zn	15–20	4.5	1.5	0.2	7.0	5.6		
Sr	50-70	23	_	15	56	29		
Zr	0.8-2.6	0.4	0.2	1.7	0.1	0.1		
Mo	0.5-1	0.1	0.2	0.1	0.6	0.2		
Sn	0.009-0.04	0.14	0.05	_	1.22	0.14		
Ba	10–20	33	_	10	14	6		
Pb	1–3	1.0	1.7	0.3	0.3	0.2		

^{*} Livingston, 1963.

Содержание Cu, Zn, Sr и Zr существенно ниже этих показателей, остальные элементы находятся в пределах 1.5-кратных изменений средних (кларковых) содержаний микроэлементов в речных водах.

Некоторые весьма существенные различия в результах анализа воды, полученные методами ЭСА и ІСР, связаны с тем, что ЭСА является полуколичественным, соответственно ІСР предпочтительнее. Широкое использование ЭСА для решения отдельных геохимических задач связано с его экспрессностью и существенно меньшей по сравнению с ІСР стоимостью. Поэтому для получения сравнимых данных при анализе микроэлементного состава в системе вода—донные отложения—водоросли (сестон, перифитон)—макрофиты—ихтиофауна был использован именно ЭСА.

Анализ микроэлементного состава донных отложений р. Амур, оз. Удыль, водорослей (сестон, перифитон), осадка сточных вод

Таблица 2. Микроэлементный состав ДО и биологических объектов р.

Амур, мг/кг золы. Над чертой – средние значения, под чертой – min-max								
Эле- мент	OII *	до	Удыль ЛО	OCB	Сестон	Пери- фитон	Мак- рофиты	Ихтио- фауна
		n = 51	n = 25	n = 6	n = 24	n = 30	n = 14	n = 39
C -	: 10	7	7	<u>6</u>	<u>6</u>	<u>5</u>	<u>5</u>	<u>4</u>
Sc 10	4–10	4–10	6	4–10	4–10	4–6	4	
		<u>3600</u>	2000	2000	<u>2000</u>	<u>2000</u>	<u>600</u>	<u>10</u>
Ti	4500	1000- 6000	2000– 3000	2000– 3000	1000- 3000	1000– 4000	100- 2000	10–30
V	130	<u>70</u>	<u>80</u>	<u>80</u>	<u>80</u>	<u>80</u>	<u>30</u>	<u>4</u>
v	130	40–100	60-100	60-100	30–100	40–100	3-80	3–30
Cr	100	<u>50</u>	<u>30</u>	<u>37</u>	<u>30</u>	<u>37</u>	<u>7</u>	<u>6</u>
CI	100	40-100	20-40	30–40	10-100	20–60	6-10	6–10
	670	<u>660</u>	<u>540</u>	<u>2300</u>	<u>2100</u>	<u>1500</u>	<u>1600</u>	<u>90</u>
Mn	670	300– 1000	100– 800	600– 10000	400– 6000	400– 6000	300– 6000	10–300
Fe**	4.65	<u>2–4</u>	<u>2–5</u>	<u>2–5</u>	<u>4–7</u>	<u>3–6</u>	<u>1–2</u>	<u>0.1</u>
10	4.03	1–6	2–6	1–6	1–10	1–10	1–3	0.001-1
Co	20	<u>8</u>	<u>8</u>	<u>8</u>	<u>9</u>	<u>8</u>	<u>4</u>	<u>4</u>
	20	1–20	4–10	4–20	4–30	4–30	4–6	4
Ni	95	<u>28</u>	<u>20</u>	<u>35</u>	<u>19</u>	<u>25</u>	<u>6</u>	<u>4</u>
111		10–40	10–30	20–60	6–30	6–60	4–10	4
Cu	57	<u>20</u>	<u>20</u>	<u>200</u>	<u>50</u>	<u>40</u>	<u>30</u>	<u>20</u>
Cu		10–40	20	100–300	20–100	20–80	20–100	20–30
Zn	80	<u>80</u>	<u>60</u>	<u>410</u>	<u>220</u>	<u>170</u>	<u>14</u>	<u>120</u>
211	00	0-300	30–100	300–600	30-800	10-800	6–60	6–300
Sr	450	<u>160</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>300</u>	<u>100</u>
51		100–300	100	100	100-200	100	100-400	100–200
Zr	200	<u>370</u>	<u>200</u>	<u>200</u>	<u>140</u>	<u>100</u>	<u>30</u>	<u>4</u>
2.1		200–600	100–300	200	60-200	60–200	4–80	3–4
Mo	2	0.8	<u>1.6</u>	<u>0.8</u>	<u>1.0</u>	<u>2.1</u>	<u>1.0</u>	<u>0.6</u>
1710		0.4–2	0.6 - 3	0.6–1	0.6-3	0.6 - 3	0.6–2	0.6–1
Sn	10	<u>3</u>	<u>3</u>	<u>2.3</u>	<u>3</u>	<u>2.1</u>	<u>0.8</u>	<u>0.6</u>
511		1–10	1–4	1–4	1–8	0.6 - 8	0.6–2	0.6
Ba	800	<u>520</u>	<u>300</u>	<u>100</u>	<u>240</u>	<u>180</u>	<u>170</u>	<u>60</u>
		300–800	100–400	100	60–600	60–600	60–300	60
Pb	20	<u>20</u>	<u>13</u>	<u>25</u>	<u>33</u>	<u>20</u>	<u>14</u>	<u>7</u>
		10–40	6–20	20–40	10–100	6–80	6–80	6–10

^{*} Осадочные породы, Виноградов, 1962.

** Содержание Fe, %.

(ОСВ), макрофитов и ихтиофауны (табл. 2) проведен в сравнении со средними (кларковыми) содержаниями элементов в осадочных породах (глины и сланцы) по А.П. Виноградову (1962).

Донные отложения поверхностных водотоков традиционно используются в качестве индикатора для выявления состава, интенсивности и масштаба техногенного загрязнения.

Согласно данным табл. 2, речные и озерные донные отложения характеризуется близким микроэлементным составом. Содержание микроэлементов в ДО не превышают средних содержаний элементов в осадочных породах. Содержание Сг, Со Zn, Sr и Ва более чем в полтора раза ниже данного показателя в осадочных породах. В ОСВ отмечается наибольшее — более чем 1.5-кратное превышение содержания Мn, Сu и Zn. Близкими концентрациями указанных элементов характеризуется и сестон. Дополнительно в составе сестона происходит почти 1.5-кратное накопление свинца по сравнению с осадочными породами.

В биологических объектах содержание микроэлементов закономерно уменьшается в ряду: водоросли (сестон, перифитон) > макрофиты > ихтиофауна. В макрофитах наблюдается некоторое накопление по сравнению с сестоном Sr. Таким образом, наиболее информативным биологическим объектом аккумуляции тяжелых металлов в экосистеме Амура является сестон.

Накопление в ОСВ и сестоне Fe, Mn, Zn и Cu позволяет предполагать возможность накопления этих элементов в тонкодисперсных фракциях донных отложений. Анализ микроэлементного состава ВПИ и АИ донных отложений подтвердил более чем 1.5кратное по сравнению с осадочными породами накопление Mn, Zn и Pb (табл. 3). Дополнительно в составе тонкодисперсных фракций ДО отмечается более чем 1.5-кратное накопление Fe. Повышение содержания Си в ВПИ и АИ отмечается как тенденция. Аккумуляция тяжелых металлов тонкодисперсными компонентами ДО может быть связана с образованием поверхностных комплексов катионов тяжелых металлов с глинистыми минералами смектитгидрослюдистого состава (Чижикова и др., 2004; Kharitonova et al., 2006). Следовательно, для характеристики накопления в ДО тяжелых металлов необходимым этапом подготовки образцов к анализу является их фракционирование с выделением тонкодисперсных фракций – ВПИ и АИ.

Таблица 3. Микроэлементный состав тонкодисперсных фракций донных отложений р. Амур, мг/кг (n=8). Над чертой — данные ЭСА, под чертой — данные РФА

ТОИ — Данные РФА								
Элемент	ОП*	ДО	ВПИ	АИ	OO			
Ti	4500	3900/5000	4000/5500	5200/6700	3600/4400			
V	130	65/—	82/–	92/–	65/–			
Cr	100	54/—	90/–	125/-	36/–			
Mn	670	540/900	990/1800	1100/1700	490/560			
Fe**	4.6	1-3/2.4	3-6/8.2	4-8/10.4	1-3/2.0			
Co	20	14/—	16/–	20/—	10/–			
Ni	95	30/24	25/52	29/59	10/24			
Cu	57	20/27	28/41	24/40	18/20			
Zn	80	80/90	140/146	150/180	60/59			
Sr	450	220/274	160/164	100/100	2280/309			
Zr	200	450/367	200/141	200/176	440/371			
Mo	2	1.6/-	1.6/-	1.8/-	1.1/-			
Sn	10	1.8/—	2.1/-	1.5/-	1.5/-			
Ba	800	380/-	250/—	260/—	480/—			
Pb	20	25/30	31/17	36/17	25/21			

Примечание. ОП — осадочные породы, ОО — остаток от отмучивания илов, прочерк — элемент данным методом не определяется.

ЗАКЛЮЧЕНИЕ

Для оценки региональных фоновых содержаний микроэлементов в водах р. Амур и почвах, сформированных на на озерноаллювиальных отложениях, рассмотрен микроэлементный состав системы вода-донные отложения-водоросли-макрофиты-ихтиофауна". Установлены минимальные и максимальные концентрации микроэлементов в отдельных ее компонентах. Показано, что в биологических объектах содержание микроэлементов закономерно уменьшается в ряду водоросли > макрофиты > ихтиофауна. Наиболее информативным биологическим объектом аккумуляции микроэлементом в экосистеме Амура являются водоросли. Аккумуляция Fe, Mn, Zn и Cu в донных отложениях связана с образованием поверхностных комплексов катионов металлов с глинистыми минералами и с их накоплением диатомовыми

водорослями. Для характеристики накопления в донных отложениях тяжелых металлов необходимым этапом подготовки образцов к анализу является их фракционирование с выделением тонкодисперсных фракций.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Виноградов А.П.* Средние содержания химических элементов в главных типах изверженных горных пород земной коры // Геохимия. 1962. № 7. С. 555–571.
- 2. *Михалев Ю.А., Сиротский С.Е., Харитонова Г.В.* Рентгенфлуоресцентное определение тяжелых металлов в природной воде // Лаб. новости ДВ. 1999. № 1. С. 18.
- 3. Чижикова Н.П., Харитонова Г.В., Матюшкина Л.А., Сиротский С.Е. Минералогический состав тонкодисперсной части почв среднего и нижнего Приамурья, донных отложений и взвесей реки Амур // Почвоведение. 2004. № 8. С. 1000–1012.
- 4. Förstner U. and Wittmann G.T.W. Metal Pollution in the Aquatic Environment. Springer, 1983. 486 p.
- 5. *Kharitonova G.V., Manucharov A.S., Kirichenko A.V., Pavlyukov I.A.* Electron Microscopy of Clay Minerals Treated with Salt Solutions // Eurasian Soil Science. 2006. V. 39. Suppl. 1. P. S69–S77.
- 6. *Livingston D.*A. Chemical composition of rivers and lakes: Date of geochemistry // U.S. Geol. Survey Profess. 1963. Papper 440G. P. G1–G64.
- 7. *Moor J., Ramamoorthy S.* Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment. N. Y.: Springer, 1984. 288 p.
- 8. *Sparks D.L.* Toxic metals in the environment: the role of surfaces // Elements. 2005. V. 1. P. 193–197.
- 9. *Sposito G.* The surface chemistry of soils. N.Y.: Oxford Univ. Press, 1984. 234 p.

^{*} Виноградов, 1962.

^{**} Содержание Fe, %.

УДК 631.4

РОЛЬ РАСТВОРИМЫХ СОЛЕЙ В АГРЕГАЦИИ ГЛИНИСТЫХ МИНЕРАЛОВ

©2011 г. Н. П. Чижикова¹, Г. В. Харитонова², Н. С. Коновалова³

¹Почвенный институт им. В.В. Докучаева Россельхозакадемии, 119017, Москва, Пыжевкий пер., 7

² Институт водных и экологических проблем ДВО РАН, 680000, Хабаровск, ул. Ким-Ю-Чена, 65

e-mail: gkharitonova@mail.ru

³ Институт тектоники и геофизики ДВО РАН, 680000, Хабаровск, ул. Волочаевская, 146

Методами оптической и электронной микроскопии изучено поведение глинистых минералов (смектита и каолинита) под влиянием растворимых солей. Это взаимодействие приводит к образованию глинисто-солевых микроагрегатов. Упаковка частиц, размеры, форма и оптические свойства глинисто-солевых микроагрегатов зависят от природы минерала и свойств соли, участвующих в агрегации.

Ключевые слова: агрегация; глинистые минералы; солевые растворы; оптическая и электронная микроскопия.

ВВЕДЕНИЕ

Растворимые соли взаимодействуют с глинистыми минералами. Знание механизмов взаимодействия позволяет оценить мобильность и биодоступность того или иного компонента в почвах. При исследовании процессов взаимодействия глинистых минералов с растворимыми солями крайне перспективно комплексное использование методов оптической и электронной микроскопии (Турсина и др., 1980; Харитонова и др., 2002; Шоба и др., 1983; Shahidzadeh-Bonn et al., 2008). Первая группа методов позволяет получать экспресс-характеристику возможных эффектов на уровне микроагрегатов. Вторая относится к высоко локальным методам анализа и позволяет изучать процессы, происходящие на поверхности кристаллитов глинистых минералов.

Целью работы является анализ поведения глинистых минералов (смектита и каолинита) при взаимодействии с растворимыми солями.

ОБЪЕКТЫ И МЕТОДЫ

Для исследования использованы образцы бентонитовой глины (Туркмения, Огланлы) и каолина (Украина, ст. Просяновская). Бентонитовая глина содержит минерал смектитовой группы и незначительную примесь кристобаллита, кварца и кальцита. Каолин состоит из каолинита. Далее смектит и каолинит соответственно. Обработку ГМ проводили 1 н. растворами солей NaCl, MgCl₂, KCl, ZnCl₂, RbCl, SrCl₂. Поскольку хлорид Pb (II) малорастворим, в эксперименте использовали растворимую соль Рb(CH₃COO)₂. Исходные минералы предварительно растирали до размера 0.074 мм. Далее 10 г образца заливали 200 мл 1 н. раствора соответствующей соли и в течение 6 ч перемешивали на ротаторе, после чего отфильтровывали, образец сушили на воздухе. Оптическое изучение (ОМ) образцов глинистых минералов проводили на микроскопе "Axioplan 2" (Карл Цейсс, Германия), а электронномикроскопическое исследование (РЭМ) на растровом электронном микроскопе "EVO 40 HV" (Карл Цейсс, Германия). Образцы для анализа РЭМ подготовили методом суспензии в С2Н5ОН и пиридине (SrCl₂- и ZnCl₂-образцы) с последующим высушиванием и напылением Au. Для анализа фаз, содержащих Zn, Rb, Sr и Pb, был использован детектор обратно рассеянных электронов (QBSдетектор). Валовые содержания макро- и микроэлементов в образцах глинистые минералы определены на рентген-флюоресцентном энергодисперсионном анализаторе "TEFA-III" (ORTEC, CIIIA) (Савичев, Сорокин, 2002).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сопряженный анализ ГМ методами ОМ и РЭМ свидетельствует об изменении их организации после взаимодействия с растворами солей и образовании глинисто-солевых микроагрегатов. Наиболее полную картину по сравнению с ОМ дают данные РЭМ, но использование ОМ позволяет оценить масштаб происходящих на микроуровне процессов. Рассмотрим полученные данные в по-

рядке выраженности наблюдаемых эффектов для минералов (смектита > каолинита) и растворимых солей исследуемого ряда $(KCl > NaCl > MgCl_2 > Pb(CH_3COO)_2 > ZnCl_2 \approx RbCl > SrCl_2)$. Coгласно данным ОМ, наибольшие изменения в результате взаимодействия ГМ с растворимыми солями проявляются при съемке образцов в скрещенных николях. Исходные минералы при данной механической дисперсности в проходящем свете полупрозрачные, в поляризованном свете – молочно-белые. При взаимодействии смектита с растворами NaCl и MgCl₂ в поляризованном свете были обнаружены глинисто-солевые микроагрегаты яркой радужнокольцевой окраски размером до 0.05 мм. Их образование подтверждается данными РЭМ. Для NaCl- и MgCl2-смектита четко зафиксировано образование микроагрегатов с радиальнолепестковой упаковкой частиц (рис. 1д). Для необработанного солями смектита характерны глобулярные микроагрегаты с нерегулярной упаковкой кристаллитов (рис. 1*a*).

Для NaCl-смектита кроме микроагрегатов с радиальнолепестковой упаковкой частиц (тип А) зафиксировано образование еще одного типа микроагрегатов - В. Микроагрегаты NaClсмектита типа В характеризуются спирально-винтовой упаковкой частиц (упаковка плоскость-плоскость со сдвигом) и большими трубчатыми полостями диаметром до 2 мкм (рис. 16). В основании микроагрегатов типа А находятся плотноупакованные пластинчатые элементы структуры. Согласно данным РЭМ, упакованы они по типу плоскость-плоскость без сдвига, что вызывает большие напряжения микроструктуры и, соответственно, образование радиально-лепестковой скульптуры поверхности микроагрегатов для снятия напряжения. Глинисто-солевые микроагрегаты KClсмектита (РЭМ) характеризуются трехмерной ажурной упаковкой частиц (рис. 16). Частицы упакованы как по типу плоскостьплоскость с образованием столбчатых со сдвигом элементов структуры, так и по типу ребро-ребро с образованием плоских «гексагональных» микроагрегатов.

В образце $Pb(CH_3COO)_2$ -смектита обнаружены яркие золотисто-желтые в поляризованном свете и прозрачные в проходящем свете микроагрегаты размером до 20 мкм. Кристаллы соли $Pb(CH_3COO)_2$ в условиях съемки игольчатые серебристо-серо-

Рис. 1. Микроструктура образцов смектита. Обозначения здесь и далее: a — исходный, необработанный солями; образцы, обработанные солями: δ — NaCl; ϵ — RbCl; ϵ — RbCl; ϵ — MgCl₂; ϵ — Pb(CH₃COO)₂; ϵ — ZnCl₂; ϵ — SrCl₂ (PЭM, съемка с помощью SE-детектора; на двойных фотографиях слева — SE-детектор, справа — QBS-детектор).

синие. Множественные плоские гексагональные микроагрегаты обнаружены и при РЭМ анализе образцов (рис. 1*e*).

Морфология и электронограммы микроагрегатов (Харитонова и др., 2002) свидетельствуют об упаковке кристаллитов минерала по типу ребро–ребро в плоскости и плоскость–плоскость.

В образце $ZnCl_2$ -смектит глинисто-солевые микроагрегаты (слоисто-пластинчатые, округлые в основании) обнаружены только методами РЭМ при съемке с помощью QBS-детектора (рис. 1 ж). Кристаллиты минерала в этих микроагрегатах упакованы по типу ребро—ребро в плоскости и плоскость — плоскость.

Глинисто-солевые микроагрегаты RbCl-смектита плоские, округлые, размером до 2 мкм (рис. 1z). SrCl₂-смектит характеризуется микроагрегатами с угловатой структурой, плотно упакованными по типу плоскость—плоскость (рис. 13).

Следует отметить, что агрегация кристаллитов смектита при его взаимодействии с растворами солей тяжелых металлов существенно иная, чем при взаимодействии с растворами NaCl, $MgCl_2$ и KCl. Ни в одном из перечисленных вариантов не наблюдается образование микроагрегатов с упаковкой частиц типа A и B. Образуемые глинисто-солевые микроагрегаты смектита при взаимодействии с растворами солей тяжелых металлов имеют более плотную упаковку одного какого-либо типа: либо ребро-ребро, либо плоскость-плоскость.

При взаимодействии солей исследуемого ряда с каолинитом методами ОМ глинисто-солевые микроагрегаты обнаружены только для NaCl-каолинита. Микроагрегаты NaCl-каолинита единичные, в поляризованном свете яркой радужной окраски, столбчатые до 20 мкм в диаметре. Методами РЭМ в образце NaCl-каолинита также обнаружены столбчатые микроагрегаты (до 1 мкм в диаметре и до 2 мкм высотой) и их ансамбли размером до 10 мкм (рис. 2σ). Упаковка частиц в микроагрегатах плоскость—плоскость. Образец исходного, не обработанного солями, каолинита (рис. 2σ) состоит из отдельных пластинчатых кристаллитов и агрегатов "идеально пористой" архитектуры с упаковкой частиц плоскость—ребро (Van Olphen, Fripiat, 1979).

Рис. 2. Микроструктура образцов каолинита.

Для KCl- и RbCl-каолинита также характерна упаковка частиц плоскость—плоскость (микроагрегаты до 1 мкм в диаметре и до 2 мкм высотой, толщина частиц ~ 80 нм). По сравнению с NaCl и KCl взаимодействие RbCl с каолинитом довольно слабое (рис. 26, 6, 2).

В образце $MgCl_2$ -каолинит методами РЭМ обнаружены глинисто-солевые микроагрегаты с трехмерной ажурной упаковкой частиц (рис. 2∂). Частицы упакованы как по типу плоскость—плоскость с образованием столбчатых элементов структуры, так и по типу ребро—ребро с образованием "гексагональных" колец. РЭМ анализ $Pb(CH_3COO)_2$ -каолинита показал наличие в образце множественных плоских гексагональных микроагрегатов из кристаллитов каолинита, агрегированных по типу ребро—ребро (рис. 2e), и их текстурированных агрегатов. В текстурированных микроагрегатах $Pb(CH_3COO)_2$ -каолинита упаковка плоскость—плоскость происходит со сдвигом, число частиц в стопке не превышает 7.

Микроагрегаты $ZnCl_2$ -каолинита рыхлые "веерообразные", состоят из отдельных гексагональных пластин размером до 1-2 мкм в диаметре (рис. 2π). Кристаллиты минерала в этих микроагрегатах упакованы по типу ребро-ребро как в плоскости, так и под некоторым углом и плоскость—плоскость. Глинисто-солевые новообразования $SrCl_2$ -каолинита формируются преимущественно на кристаллах соли, они немногочисленны и слабо выражены (рис. 23).

Рентген-флюоресцентный энергодисперсионный анализ (таблица) показал, что исходные глинистые минералы не содержат тяжелых металлов за исключением Sr, который в следовых количествах присутствует в смектите. Обработка глинистых минералов растворами солей $ZnCl_2$, RbCl, $SrCl_2$ и $Pb(CH_3COO)_2$ приводит к поглощению (адсорбции за счет реакций ионного обмена) и удержанию (за счет физической адсорбции соли) катионов тяжелых металлов. Количество сорбированных глинистыми минералами катионов из растворов равной концентрации существенно различается, изменяется от ~ 10 до ~ 100 ммоль/100 г и зависит от природы минерала, свойств соли и соответствующих катионов, участвующих во взаимодействии. Так, смектит сорбирует почти в два раза больше катионов, чем каолинит.

Валовое содержание элементов в глинистых минералах, обработанных 1 н. растворами соответствующих солей, ммоль/100 г

Образец	Na	Mg	K	Zn	Rb	Sr	Pb
Смектит							
(исходный)	36.8	75.5	4.3	0	0	0.5	0
NaCl	55.2	63.0	4.3	0	0	0.4	0
$MgCl_2$	9.7	134.0	4.5	0	0	0.4	0
KC1	< 6.5	34.3	125.9	0.1	0	0.1	0
$ZnCl_2$	58.1	63.5	35.3	53.7	0.1	0.2	0
RbCl	< 6.5	36.6	1.6	0.1	26.0	0.2	0
SrCl ₂	< 6.5	45.7	1.2	0	0	11.7	0
$Pb(CH_3COO)_2$	17.7	57.8	2.1	0	0	0.5	107.2
Каолинит							
(исходный)	7.4	26.8	2.1	0	0	0	0
NaCl	15.8	23.0	20.9	0	0.1	0	0
$MgCl_2$	16.5	57.8	22.3	0	0.1	0	0
KC1	< 6.5	12.8	50.2	0	0.1	0	0
$ZnCl_2$	34.2	22.8	2.6	44.6	0	0	0
RbCl	< 6.5	9.0	19.8	0	15.0	0	0
SrCl ₂	< 6.5	8.4	23.1	0	0.1	8.6	0
Pb(CH ₃ COO) ₂	13.2	26.3	0.4	0	0.2	0	47.4

Максимум сорбируемости отмечается для свинца — валовое содержание Pb в смектите и каолините после обработки солью составляет $\sim \! 100$ и $\sim \! 50$ ммоль/100 г соответственно. Близкими величинами поглощения из 1 н. раствора KCl характеризуется калий, катионы которого имеют близкий радиус с катионами свинца — 1.33 и 1.32 Å соответственно.

Валовые содержания магния после обработки смектита и каолинита 1 н. раствором $MgCl_2$ также возрастают до $\sim\!100$ и $\sim\!50$ ммоль/100 г соответственно. Но с учетом валового содержания магния в исходных минералах, его поглощение существенно меньше $\sim\!60$ и $\sim\!30$ ммоль/100 г соответственно.

Минимум сорбируемости отмечается для стронция ~ 10 ммоль/100 г. Поглощение катионов тяжелых металлов глинистыми минерами из 1 н. растворов соответствующих солей в ряду $Pb^{2+} \geq Zn^{2+} > Rb^+ > Sr^{2+}$ уменьшается. Причем если для каолинита поглощение Pb и Zn близкое ~ 50 ммоль/100 г, то для смектита сорбируемость Zn существенно ниже $Pb \sim 50$ и ~ 100 ммоль/100 г соответственно. Меньшая сорбируемость цинка смектитом по сравнению с катионами свинца, возможно, связана с гидролизом Zn^{2+} до $ZnOH^+$, катализируемого смектитом (Ma, Uren, 1998).

ЗАКЛЮЧЕНИЕ

Методами оптической и электронной микроскопии изучено взаимодействие глинистых минералов (каолинита и смектита) с 1 н. растворами NaCl, MgCl₂, KCl, ZnCl₂, RbCl, SrCl₂ и Pb(CH₃COO)₂. Показано, что при взаимодействии глинистых минералов с растворами указанных солей образуются глинистосолевые микроагрегаты. Выраженность процесса образования глинисто-солевых микроагрегатов уменьшается в ряду KCl>NaCl>MgCl₂ > Pb(CH₃COO)₂ > ZnCl₂ \approx RbCl > SrCl₂. Упаковка частиц, размеры, форма и оптические свойства образуемых глинисто-солевых микроагрегатов зависят от природы минерала и свойств соли, участвующих во взаимодействии.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Савичев А.Т., Сорокин С.Е.* Рентген-флюоресцентный энергодисперсионный анализ макроэлементов в почвах с использованием реперного элемента // Почвоведение. 2002. № 12. С. 1452–1457.
- 2. *Турсина Т.В., Ямнова И.А., Шоба С.А.* Опыт сопряженного поэтапного морфоминералогического и химического изучения состава и организации засоленных почв // Почвоведение. 1980. № 2. С. 30–43.
- 3. Харитонова Г.В., Землянухин В.Н., Манучаров А.С., Черноморченко Н.И. Электронно-микроскопическое исследование Pb^{2+} и Zn^{2+} -насыщенных глинистых минералов // Тихоокеанская геология. 2002. Т. 21. № 3. С. 107–118.
- 4. *Шоба С.А., Турсина Т.В., Ямнова И.А.* Растровая электронная микроскопия солевых новообразований почв // Науч. докл. высш. школы. Биол. науки. 1983. № 3. С. 91–98.
- 5. *Ma Y.B., Uren N.C.* Dehydration, diffusion and entrapment of zinc in bentonite // Clays and Clay Minerals. 1998. V. 46. No 2. P. 132-138.
- 6. Shahidzadeh-Bonn N., Rafaï S., Bonn D., Wegdam G. Salt crystallization during evaporation: impact of interfacial properties // Langmuir. 2008. V. 24. P. 8599–8605.
- 7. *Van Olphen H., Fripiat J.J.* Data Handbook for Clay Materials and other Non-metallic Minerals. Oxford–New York–Toronto–Sydney–Paris–Frankfurt: Pergamon Press, 1979. 346 p.