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Abstract: Soil surface subsidence is a natural hazard that has been reported in 
arid and semi-arid lands of the world. From the last few decades to the present, 
soil surface subsidence has been a major phenomenon of most plains in Iran. 
The core reason of this phenomena is water extraction from ground water by 
pumping wells. The study area located on the clayey plain covered by the 
complex of Aridisols and Vertisols in the east of Yazd city in central Iran with 
cracks of longitudinal and polygonal shapes. This experiment had been 
planned to find micro-relief dynamics in a time series after rainfall and 
drought periods followed by soil surface subsidence and soil cracking. For 
modeling of soil vertical dynamics and cracking processes, a sampling area 
was selected with 100 points for surveying with Box Jenkins model. The 
topography measurements of surveying data showed soil surface height 
variations from a few millimeters to some centimeters (-14 to +14 mm in a 
year) with sinusoidal rhythms. Auto Regressive (AR) model could predict the 
land height variations up to 5 years ahead with high accuracy (3 mm). Based 
on field surveying, drone imagery data confirmed the temporal forecasting 
model. In the study area land depressing resulted from minerals degradation 
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into amorphous silicas after soil alkalization. Thereupon the monthly changes 
of soil surface wetting and drying were major factors for land altitude 
dynamics, whereas the very deep level of groundwater had no effect on soil 
surface subsidence. It is suggested that for monitoring of soil surface 
subsidence and soil cracks over time, the surveying with complementary and 
drone imagery could be much more appropriate method, which allows 
predicting temporal soil surface subsidence in local scale.  

Keywords: soil vertical dynamic; desert area; soil surface subsidence. 

Моделирование временных рядов проседания 

почвы на территории с комплексом Aridisols и 

Vertisols с помощью геодезической и  

БПЛА-съемки в Центральном Иране  

Резюме: Проседание поверхности почвы является природной 
опасностью, о которой сообщалось в засушливых и полузасушливых 
районах мира. В последние несколько десятилетий проседание 
поверхности почвы стало ощутимым для большинства равнин в Иране. 
Основной причиной этого явления служит извлечение грунтовых вод с 
помощью насосных скважин. Район исследования расположен на 
равнине (подстилаемой глинами) с комплексом Aridisols и Vertisols на 
востоке города Йезд в центральном Иране, где отмечены трещины 
продольной и многоугольной формы. Данный эксперимент проведен с 
целью выявления динамики микрорельефа во временнóм ряду, а именно, 
после дождей и периодов засухи, сопровождающихся проседанием 
поверхности почвы и ее растрескиванием. Для моделирования 
вертикальной динамики почвы и процессов растрескивания был выбран 
участок со 100 точками для съемки, использовалась модель Бокса-
Дженкинса. Топографические измерения по данным геодезической 
съемки показали колебания высоты поверхности почвы от нескольких 
миллиметров до нескольких сантиметров (от -14 до +14 мм в год) с 
синусоидальными ритмами. Авторегрессионная модель (AR) позволила 
предсказать колебания высоты почвы на срок до 5 лет с высокой 
точностью (3 мм). Данные полевых исследований и беспилотной съемки 
подтвердили модель временнóго прогноза. На исследуемой территории 
проседание почвы произошло в результате деградации минералов в 
аморфный силикат после выщелачивания почвы. При этом ежемесячные 
изменения увлажнения и высыхания поверхности почвы были 
основными факторами для изменения уровня поверхности, в то время 
как глубоко залегающие грунтовые воды влияния не оказали. Для 
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мониторинга проседания поверхности почвы и трещин в почве с 
течением времени рекомендуется использовать изображения БПЛА-
съемки в сочетании с результатами полевых исследований, что является 
наиболее подходящим способом прогнозирования проседания 
поверхности почвы с течением времени на локальном уровне.   

Ключевые слова: вертикальная динамика почвы; пустынная местность; 

проседание (провалы) поверхности почвы. 

INTRODUCTION   

Soil surface subsidence and crack formation on the plains with 
clay soils was reported in Yazd, Iran (Akhavan Ghalibaf, 2008). Over-

exploitation of groundwater resources could be a reason for soil surface 

subsidence (Bhattarai et al., 2017). Soil surface subsidence is oftenly 
caused by three distinct water-related processes: 1) compression (com-

paction or consolidation) of bedded layers of clay and silt within the 

aquifer system; 2) drainage and oxidation of organic soils; and 3) dis-

solution and collapse of soluble materials (Bazargan, Esmaeil, 2010). 
Some of the serious effects of soil surface subsidence includes change 

of gradient along water conveyance canals, gas and oil pipes, damage 

to roads and bridges. Also collapse of aquifers after soil surface subsid-
ence results from decreased groundwater volume (Aminihosseini, 

1993; Pacheco-Martínez, 2013). Understanding and detecting soil sur-

face subsidence at initial stages is important to prevent land use dam-
ages (Fulton, 2014). One of the most important issues in soil surface 

subsidence management is to predict the processes of soil surface sub-

sidence changes over time. In addition, the prediction of soil surface 

subsidence during groundwater extraction by warning systems allows 
officials to reduce the damage caused by its further occurrence and to 

take special measures in advance to control it. In some places on the 

clayey soils of Yazd, where depression and giant cracks have occurred 
on the lands, calcareous-silicon concretions (lime dolls features) can 

also be seen with dimensions from a few centimeters to 20 centimeters 

and the core reasons of this phenomena are groundwater extraction and 

the presence of clay and amorphous silicas in the soil (Akhavan Ghal-
ibaf, 2008). Skempton (1953) and Bjerrum (1954) found active clays 

and made the designation for the clay activity in the soil. In order to 

predict changes in soil surface, various models have been used which 
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among stochastic statistical models are often used extensively in vari-

ous aspects and contexts, including the time series model or the Box-

Jackins model, which is widely used in hydrology and climatology sci-
ence for modeling and predicting data (Aghelpour et al., 2016). Chen et 

al. (2015) investigated spatial-temporal evolution patterns of soil sur-

face subsidence with different situation of space utilization in Beijing, 

China, during 7 years with multi-temporal InSAR method incorporat-
ing both PS and SB approaches. The results showed that the soil sur-

face subsidence had developed very quickly and the regional soil sur-

face subsidence rate was not only related to the groundwater exploita-
tion, but also related to dynamic load and underground space utiliza-

tion. Ty et al. (2021) studied spatio-temporal variations in groundwater 

levels and the impact on soil surface subsidence in CanTho, Vietnam, 

using groundwater level assessment from 2000 to 2018. The results 
indicated significant downward trends of groundwater level and the 

average subsidence rate of 4.28 cm per year was observed. Su et al. 

(2021) investigated vertical movement rate of soil surface subsidence 
from 1960 to 2010 (six decades) using Global Navigation Satellite Sys-

tem (GNSS) data in north China plain and obtained the average vertical 

movement of soil surface subsidence of 31.13 mm per year. Li et al. 
(2021) modeled spatio-temporal soil surface subsidence with Perma-

nent Scatterer-Interferometric Synthetic Aperture Radar (PS-InSAR) 

method. They realized that groundwater level variation is not a unique 

factor of soil surface subsidence in the study area and the spatio-
temporal characteristics of soil surface subsidence under multiple vari-

ables can be used to predict soil surface subsidence due to groundwater 

level variations. Chu et al. (2021) estimated soil surface subsidence 
with spatio-temporal data fusion and found that the subsidence varies 

with time and space. Azarakhsh et al. (2022) predicted soil surface sub-

sidence over time from 2014–2017 with Sentiel-1 time series in Teh-
ran-Shahriar plain. The results showed that the soil surface subsidence 

is active and some factor combination that related to soil surface sub-

sidence displacement including precipitation, ground water table 

change and depth to water table along with the distance from faults and 
thickness of fine-grained soil layers (clay and silt). The aim of this 

study is to predict height variations of soil surface subsidence and soil 

cracks in the course of time using direct surveying data and finally test-
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ing model with drone imagery data to increase land stability with moni-

toring in time and revealing hazard zones of land depressions.  

MATERIALS AND METHODS 

Study area 

The study area located in the east of Yazd on the clayey desert 

soils in Khavidak district, geographical coordination: 40R, 31°50'35'' to 
31°50'45'' N and 54°28'30'' to 54°28'45'' E (Figure 1).   

 

 
Fig. 1. Geographic location of the study area (a) Iran, (b) Yazd city and (c) 

East of Yazd city. Green lines: Vegetation cover (Haloxylon sp.). Red lines: 

Soil crack. Blue lines: Qanat. 

The selected area for intensive observation limited to about 7 
hectares. The common feature in the study area was microrelieves on 

the lands and two types of surface soil crack (longitudinal and polygo-

nal). This phenomenon was adjacent to Yazd, the famous historical city 

in Central Iran, which was registered in UNESCO (UNESCO, 2017). 
For wind erosion control, species of desert resistant plants like Haloxy-
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lon sp. were planted as vegetation cover with the climate of extra arid 

and cold. 

The air photos from years 1967 to 2020 are presented in Fig-
ure 2. According to the air photos, in 1967 the area was buried under 

sand dunes, but after 24 years due to protection of the area from further 

wind depositions the clayey soil surface has appeared. Last image by 

drone after 29 years shows less plant covers (Holloxylon sp.) after de-
creasing water table lower than 100 meters from soil surface.  

 

 
Fig. 2. The pictures from left to right show: air photos (a) 1967 (Scale: 

1 : 20 000), (b) 1991 (Scale: 1 : 40 000), and drone imagery (c) 2020 (Scale: 

1 : 1 000). 

The study area consists of the old pluvial flood clayey plain of 

Quaternary geological age. These depositions were surrounded with 

depositions of younger piedmont plain. The origin of depositions con-
sists of Triassic geological period of Mesozoic with Nayband for-

mation to conglomerates of Eocene geological period of Tertiary 

(Hajmollaali, Majidifard, 2000). 
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Survey of research area and soil sampling  
Soil samples were taken from the soil profile horizons in the dy-

namic positions where land surface was unstable with upward and 
downward movements and soil cracks. Then the soil samples were col-

lected from the horizons on sample profile for complementary ana-

lyses, including the first depth of 0–20 cm as A horizon, second depth 

of 20–100 cm as B and Bqk horizon in depth of 100–200 cm and the 
last soil sample were taken from the depth more than 200 to 300 cm as 

C horizon. The usual soil chemical properties were analyzed in saturat-

ed paste extracts by traditional methods such as electrical conductivity 
(EC) as salinity index, and sodium adsorption ratio (SAR) as alkalinity 

index. The soil physical property as Soil texture measurements were 

performed using hydrometer (Gee, Bauder, 1986). Table 1 presents 

Activity Designation of clay that change from low-active to active. 

Table 1. Designation of clay with regard to activity according to Bjerrum 

(1954) 

Activity Designation 

0 < CA ≤ 0.75 low-active 

0.75 < CA ≤ 1.4 normal 

1.4 < CA ≤ ∞ active 

Skempton (1953) studied the relation between plasticity index 

and clay content in clay. Rankka et al. (2004) revealed that this relation 

was designated the clay activity (CA) and defined as Equation 1: 
 

CA = PI/C,      (1) 

 

where PI (% plasticity index) = LL (% liquid limit) – PL (% plastic 
limit), C = % clay content. 

COLE (Coefficient of Linear Extensibility) was measured via 

the spherical soil in the plastic limit and calculated using Equation 2 as 
follows (Golden, 2014): 
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COLE =
Vm

Vd
− 1,    (2) 

 

where: Vm is spherical volume of wet soil and Vd is spherical volume 

of dry soil. 

Soil surface subsidence and soil crack height variations 

measurements at specific times 

In order to study the height variations (Height or Z) within the 

study area, 4 concrete stations are placed indicated as S1, S2, S3 and 
S4 in the 4 corners for grid the area to survey height variations and 100 

pines were hit as index points by random systematic sampling (Shal-

abh, 2018) in the study area. Then to determine micro movement of 

soil surface subsidence and soil crack (Z) was used Leveling method 
with a level detector with an accuracy of ± 3 mm and plate level (Wer-

ner, 1968). Leveling calculations were performed by the height of level 

and the height of all index points is determined from stations S1 and 
S3. Then in the following periods the measurements had been repeated 

with the same accuracy and sensitivity and compared with the same 

points of previous and first periods. The process of height variations of 
index points in soil surface subsidence and soil crack by measurements 

was modeled with the result of overlap of three-dimensional topo-

graphic layers at different times. Measurements were carried out in wet 

and dry months of year in December 2014, January 2015, February 
2015, March 2015, May 2015, August 2015 and November 2015 and 

December 2015, across 12 months except April 2015, September 2015 

and October 2015 because it did not show any difference from the 
March 2015 because clays against dryness and wetting lead to surface 

dynamics. Finally, the measure changes were drawn with the Kriging 

simple method (Arc GIS 10.6 software). The prediction model of 
height variations created with EViews 10 software. Finally, for moni-

toring and testing prediction dynamic model (Height, Z) in the study 

area was used Phantom 4 drone for high resolution imagery with 20 

mega pixel camera from 50 meters flying altitude with the resolution of 
5 cm for the pixel sizes (Figure 3). 
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Fig. 3. A concrete station as standard point (a), index points (b) for measuring 

by level detector and Phantom 4 drone for high resolution imagery (c). 

After taking the desired images, the necessary processing was 
done to generate dense point clouds using Agisoft photo scan software 

(Jebur et al., 2018). In this step, matching points between images are 

overlapped, the camera position is estimated for each image, and an 
initial and sparse point cloud model was created. Aligning the images 

were done to identify the points in each image and perform the match-

ing process with the same point in two or more images (Anurogo et al., 

2017). For the actual image production stage, the highest accuracy is 
used in Align Photo. Dense point cloud model was done after leveling 

and testing the accuracy of ground control points. The final output of 

this process was a 3D structure that also provides information about the 
relative positions of the camera and the relative distances between the 

camera and the object (Dellaert et al., 2000). The next steps include 

meshing and digital elevation model (DEM) construction, respectively. 
Creating the mesh was the stage of the 3D or polygonal model, which 

is one of the main outputs of Agisoft aerial image processing, which is 

used for 3D modeling for creating DEM with the accuracy of 3 mm. 

Research methods 
In statistical science and signal processing, the time series model 

also known as Box Jenkins model, is a model commonly used to meas-

ure data sorted by time. The observed time series can be considered as 
the result of a stochastic process. The simplest model that can be con-

sidered to simulate this time series is related to the process in which 

events occur at separate times and at regular intervals and each of them 

is independent of the other values (Box, Jenkins, 1976). Famous time 
series models included Auto Regressive (AR), Moving Average (MA), 

Auto Regressive Moving Average (ARMA) and Auto Regressive Inte-
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grated Moving Average (ARIMA). In this research due to the instabil-

ity of the data of height variations over time, the ARMA model was 

suitable to predict the time series. 

Auto Regressive Moving Average model (ARMA) 

The first sub-model, ARMA (autoregressive moving average), 

has two components: an autoregressive (AR) component and a moving 

average (MA) component. The autoregression (p) and moving average 
(q) parameters define the model. The AR component of an ARMA 

model predicts a variable’s value based on its own lagged (i. e. prior) 

values. The MA component of the model predicts a variable’s value as 
a linear combination of past error terms. The Box-Jenkins method is 

used to evaluate the parameters of the model by using the calculation of 

the Akaike, Schwarz and Hannan-Quinn info criterion (Shahriari et al., 

2022). The ARMA model can be written as Equation 3: 
 

(1 - ϕ1 B - … - ϕp B
p
) Yt = c + (1 - θ1 B - … - θq B

q
) αt,  (3) 

 
where B denotes the Box-Jenkins backshift operator (B

p
Yt = Y(t-p)), ϕ 

and θ represent the vectors of the autoregressive and moving average 

parameters, respectively, c – refers to the model intercept, αt is a series 
of independent random errors with zero mean and variance σ

2
. 

In this study by using the surveying data, one-year height varia-

tions (2014–2015) up to 2020 was predicted using Eviews 10 software 

(Agung, 2011) and for testing model, the modeled data was compared 
with drone data obtained from year 2020. 

RESULTS AND DISCUSSION 

Soil physical, mechanical and chemical properties in typical 

sample profile in cracked lands 
According to the amount of clay, silt and sand in Table 2, soil 

texture of A and B horizons are silty clay, in dolls (Bqk) are loam and 

in C horizon is sandy clay. The soil electrical conductivity (EC) 

showed high salinity in soil profile. The index of pH and SAR show 

more alkalinity in soil surface (horizon A). The amorphous silica con-
tent in the soil horizon A is higher than in other soil horizons.  
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Table 2. Soil texture and soil chemical properties of the study area 

Soil 

horizon 

Depth 

(cm) 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Soil 

texture 

EC (1:5, 

soil/water 

extract,) 

(dS/m) 

pH (1:1, 

soil/water 

suspension) 

Amorphous 

silicas in 

soil (%) 

SAR 

A 0–20 42 48 10 
silty 

clay 
3.50 9.0 7.0 17.00 

B 

 

Bqk 

20–100 41 44 15 
silty 

clay 
3 8.4 5.0 12.00 

100–200 12 47 41 loam 2.20 7.8 1.0 10.50 

C 200–300 44 9 47 
sandy 

clay 
2.80 7.2 0.5 11.70 
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The results of COLE and CA in the study area are provided in 

Table 3. Soils with more than 0.03 COLE in B horizon could have the 

criteria of smectite minerals for surface dynamic and Gilgai features 
according to Dixon and Weed (1992). CA data shows that the clay 

roles for land surface dynamics could not be strong. These soils, ac-

cording to Golden (2014), were classified as vertisols order in US soil 

taxonomy. Also because of aridic soil moisture regime known as Tor-
rert suborder and related to the petrocalcic horizon (Bqk) and existence 

of duripans were classified in subgroup of Leptic Calcitorrerts. 

Table 3. The amount of COLE and CA  

Soil horizon COLE CA 

A 0.02 0.32 (Low activity) 

B 0.14 0.28 (Low activity) 

Bqk - 0.44 (Low activity) 

C 0.03 0.13 (Low activity) 

Micro relief monitoring in study area 
Figure 4 presents topographic map in the study area. Red lines 

are soil cracks of two types: polygonal and longitudinal. According to 

the figure below, the area demonstrated variability including micro an-
ticline and micro syncline type. The base of study was the same as pre-

vious research in the area has presented by Amin et al. (2019). 

The amounts of height variations using surveying data registered 

on the points during 12 months is depicted in Figure 5. These amounts 
varied from -14 to +14 mm. According to all measurements, height 

variations of the points showed up and down movement in the study 

area. The most and the least height variations in the study area hap-
pened near crack lands. This phenomenon could be related to Vertisols 

with high amorphous silicas behavior (Golden, 2014). 

Time series modelling of soil surface subsidence dynamic 

with the data of surveying 
Figure 6 displays the result of field height variations and histo-

gram inventories with level detector during a year and revealed that the 

height variations of the study area is non-stationary and some index 
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points showed downward and upward trend and some data from 100 

points omitted because did not show surface dynamic. 

 
Fig. 4. Topographic map of the study area. 
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Fig. 5. Height variations of the soil surface in the study area during a year in 

mm. 
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Fig. 6. The height variations of the index points during one-year inventory (a) 

and histogram of height variations (b). 

Selected patterns in this research for time series modeling in-

clude 81 patterns of ARMA (AR and MA) model are used to consider 
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maximum degree 8 for AR model as well as degree 8 for MA model 

(Table 4). By modeling according to the principle of forbearance, the 

calculation of the Akaike, Schwarz and Hannan-Quinn info criterion 
were made for the models which presented in Table 4. According to 

results AR(8) model was the best model. 

Figure 7 shows the results of height variations (Red) and predic-

tion data until year 2020 with AR(8) model and also residual values. 
According to the diagram below, the AR(8) model fits well on the sur-

veying data. 

 
 

Fig. 7. Time series model of AR(8) using surveying data from 2015 to 2020. 

Table 5 shows R-squared (R
2
), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE) and Theil Inequality Coefficient 

(TIC) parameters of AR(8) model. According to the following results, 

the model has high accuracy. 
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Table 4. Akaike, Schwarz and Hannan-Quinn values for modeling height variations data 

ARMA 

order 

Akaike Schwarz Hannan-

Quinn 

ARMA 

order 

Akaike Schwarz Hannan-

Quinn 

0,1 2.348 2.44 2.385 4,4 2.435 2.74 2.557 

0,2 2.374 2.495 2.422 4,5 2.452 2.786 2.586 

0,3 2.4 2.552 2.46 4,6 2.474 2.84 2.621 

0,4 2.425 2.6 2.498 4,7 2.5 2.896 2.659 

0,5 2.451 2.664 2.536 4,8 2.361 2.787 2.532 

0,6 2.475 2.719 2.573 5,0 2.451 2.664 2.536 

0,7 2.424 2.698 2.534 5,1 2.477 2.72 2.574 

0,8 2.372 2.677 2.494 5,2 2.433 2.707 2.543 

1,0 2.348 2.44 2.385 5,3 2.472 2.776 2.594 

1,1 2.366 2.488 2.415 5,4 2.444 2.779 2.578 

1,2 2.391 2.544 2.452 5,5 2.479 2.845 2.626 

1,3 2.416 2.599 2.489 5,6 2.391 2.787 2.549 

1,4 2.434 2.647 2.519 5,7 2.475 2.901 2.645 

1,5 2.445 2.689 2.543 5,8 2.345 2.801 2.528 
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Table 4 continued 

1,6 2.452 2.726 2.562 6,0 2.477 2.72 2.574 

1,7 2.441 2.746 2.563 6,1 2.503 2.777 2.612 

1,8 2.324 2.658 2.457 6,2 2.448 2.752 2.569 

2,0 2.374 2.495 2.422 6,3 2.497 2.831 2.631 

2,1 2.391 2.544 2.452 6,4 2.468 2.833 2.614 

2,2 2.414 2.596 2.487 6,5 2.457 2.853 2.615 

2,3 2.44 2.653 2.525 6,6 2.478 2.904 2.649 

2,4 2.46 2.704 2.558 6,7 2.362 2.818 2.544 

2,5 2.432 2.706 2.541 6,8 2.335 2.822 2.53 

2,6 2.483 2.787 2.605 7,0 2.5 2.774 2.61 

2,7 2.314 2.649 2.448 7,1 2.434 2.739 2.556 

2,8 2.351 2.716 2.497 7,2 2.528 2.863 2.662 

3,0 2.399 2.552 2.460 7,3 2.47 2.835 2.616 

3,1 2.417 2.599 2.49 7,4 2.401 2.797 2.559 

3,2 2.381 2.594 2.466 7,5 2.384 2.81 2.554 
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Table 4 continued 

3,3 2.41 2.653 2.507 7,6 2.33 2.787 2.513 

3,4 2.43 2.704 2.539 7,7 2.547 3.034 2.742 

3,5 2.456 2.76 2.577 7,8 2.27 2.787 2.477 

3,6 2.474 2.809 2.608 8,0* 2.193 2.498 2.315 

3,7 2.409 2.774 2.555 8,1 2.214 2.549 2.348 

3,8 2.361 2.756 2.519 8,2 2.234 2.6 2.38 

4.0 2.425 2.608 2.498 8,3 2.26 2.656 2.418 

4,1 2.451 2.664 2.536 8,4 2.266 2.692 2.436 

4,2 2.462 2.705 2.559 8,5 2.289 2.746 2.472 

4,3 2.436 2.71 2.546 8,6 2.296 2.783 2.491 

8,7 2.257 2.775 2.468 

8,8 2.341 2.889 2.56 

Note. * Indicates the best model. 
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Table 5. The model accuracy of AR(8) 

R2 RMSE MAE TIC 

0.65 0.15 0.11 0.24 

Figure 8 illustrates evaluation between surveying data with 

AR(8) model and drone data in 2020. The drone after 5 years was able 

to accurately identify 35 points and adapted to surveying data. Fore-
casting results of the surveying data until year 2020 have relationship 

with drone data according to correlation coefficient (R
2 

= 0.6549) be-

tween them. 

 

Fig. 8. Comparison between AR(8) prediction model and drone real time 

imagery in year 2020. 

Figure 9 shows the difference between last inventory height data 

from surveying (2015) and topography from drone stereo imagery 
(2020). The height variations of study area varied -150 mm to +78 mm 

after five years. Also, the height variations near crack lands showed 

variability after five years. These results displayed that the accuracy of 
the prediction model is acceptable. This model could be used for areas 
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that are similar by the characteristics to the study area.   

 

Fig. 9. Height variations after 5 years (2015–2020) using surveying data 

(2015) and drone elevation (2020). 
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The height variations in a year obtained from surveying data 

showed that the region follows indentation and extrusion state and the 

region is active to extension of soil surface subsidence. Some major 
factors that is related to soil surface subsidence dynamic movement 

beside groundwater extraction, including 1) weathering in soil surface 

leaded to increase in smaller particles content (%clay + %silt) as soil 

properties (Ekeleme, Agunwamba, 2018; Yang et al., 2019); 2) amor-
phous materials with more soil dispersion particles (Azarakhsh et al., 

2022); 3) the arid climate; 4) suborder soils as calcids and torrerts in 

the Aridisols and Vertisols orders (Golden, 2014). 
In the study area land depressing was related to clay silicate deg-

radation that can accrued with increasing soil alkalinity in the surface 

horizon up to 9.0. The increase of amorphous silica from 1% in deeper 

to 7% in the surface horizons of the soil profile (Table 2) confirmed 
amorphization of clay minerals. This phenomenon of silicates amor-

phization occurred in the study area, and monthly changes of soil sur-

face wetting and drying is the core parameter for soil surface subsid-
ence dynamics in contrast to the very deep groundwater level as it is 

shown in this paper and confirmed by Amin et al. (2019). The soil pro-

cesses after wetting and drying intervals were led to form microrelieves 
on the land surface and to appearance of not irreversible deep cracks. 

Higher alkalinity and salinity in topsoils in comparison to subsoils (Ta-

ble 2) have been intensified minerals degradation and formation of 

amorphous materials (Amin et al., 2019).  
The height variations in the study area revealed by surveying 

method fluctuated from -14 to +14 mm/yr
1
 and by using time series 

modeling (ARMA) with surveying data, the ARMA model could pre-
dict height variations of soil surface subsidence 5 years further. The 

ARMA model and drone altitude data showed close results for height 

variations of soil surface subsidence, which were from -150 to +78 mm 
5 years further. For validating the prediction accuracy, the ARMA 

model results were compared to drone altitude data (Figure 8) with the 

same projected system and finally the ARMA model result was adapta-

ble for forecasting height variations. Also, the drone’s altitude data was 
suitable for investigating the height variations of observation points 

with high resolution. These results showed that the study area is active 

in terms of soil surface subsidence dynamics in vertical direction. Re-



Бюллетень Почвенного института им. В.В. Докучаева. 2025. Вып. 122 
Dokuchaev Soil Bulletin, 2025, 122 

 84 

searchers worked on time-series of soil surface subsidence rate as 

downward movement of soil surface subsidence using satellite images 

in regional scale (e. g. 1 : 150 000 and 1 : 200 000) such as Chen et al. 
(2015), Su et al. (2021), Ty et al. (2021), their results showed that the 

study area was active in terms of soil surface subsidence over time be-

cause of groundwater extraction and the average rate of soil surface 

subsidence during 7, 18 and 50 years was 41.43, 42.8 and 31.13 mm/yr, 
respectively. In this research with intensive study on soil surface sub-

sidence by measuring height variations over time in local scale 

(1 : 1 000) using surveying method there was found the rate of soil sur-
face subsidence during a year in the study area and in addition to 

downward movement, upward movement was also observed. The fac-

tors of height variations of soil surface subsidence did not change too 

much during 5 years obviously and the amount of downward move-
ment of soil surface (soil subsidence) was more pronounced than up-

ward movement. 

This phenomenon can be related to the higher amount of under-
ground water extraction in the study area, the results of this research is 

coincide with results of Ilia et al. (2018) and Orhan (2021), they found 

that the increase in soil surface subsidence was related to significant 
downward trend in groundwater wells levels and in deformation of the 

aquifer system due to groundwater level fluctuations. Rahmati et al. 

(2019), Zamanirad et al. (2020), Mohebbi Tafreshi et al. (2020) inves-

tigated the potential zones susceptible to soil surface subsidence, using 
artificial intelligence model, and their results showed that the major 

reasons for soil surface subsidence in the studied areas were decreasing 

ground water level and soil type effects, which is consistent with the 
results of the present study.  

CONCLUSIONS 

According to results of this research it can be concluded that two 
methods of surveying and drone image are suitable for investigating the 

height variations of the soil surface subsidence and soil cracking, and 

also time series modeling, such as ARMA model, showed acceptable 

results. The land in this area had movement in vertical dimensions. As 
a conclusion to be proposed mapping of the hazardous zones after min-

eralogy and geochemical analyses as a complementary analysis with 
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mechanical ones to prevent damages in sensitive constructions. Ac-

cording to geochemical and crystal-chemical processes in the soil, the 

study area is at high-risk of soil surface subsidence because of the 
clay’s combination with amorphous silicones. The surface cracks with 

vertical dynamics in the study area are affected by short periods of 

rainfall and drought, which leads to microrelieves formation on the 

land surface. It was concluded that to study height variations resulted 
from soil surface subsidence and soil cracks over time, the best and 

most appropriate method is combination of height variations data ob-

tained both through surveying and by drone stereo image in a union 
prediction time series model. It is suggested that this research could be 

generalized to other regions with similar landforms and soils, which are 

dependent on ground water, such as agriculture, urban and industrial 

lands. 
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