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Резюме: Углерод микробной биомассы (Смик) является биологически 
активным пулом почвенного органического вещества и чувствительным 
индикатором, реагирующим на изменения в землепользовании гораздо 
раньше, чем содержание общего органического углерода и других пулов 
в его составе. Метод люминесцентной микроскопии позволяет оценивать 
не только общее содержание Смик, но и определять структуру микробной 
биомассы: количество спор и длину мицелия грибов, а также количество 
бактериальных клеток и гиф актиномицетов. Целью исследования было 
оценить структуру микробного пула углерода в профилях чернозема 
типичного и дерново-подзолистой почвы в зависимости от типа 
сельскохозяйственного землепользования (сенокос, залежь, пашня, 
пастбище) методом люминесцентной микроскопии. Микробный пул 
углерода в поверхностном слое дерново-подзолистой почвы составлял от 
258 до 446 мкг/г почвы в зависимости от типа землепользования, в 
черноземе – 387 мкг/г для почвы залежи и 161 мкг/г для почвы пашни. 
До глубины 30 см Смик в черноземе залежи был в 1.5–3 раза выше по 
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сравнению с пашней. В более глубоких горизонтах различия между 
разными землепользованиями становились менее явными, но 
сохранялись для ряда микробиологических показателей. В микробном 
пуле углерода обеих почв полностью преобладал (97–99%) грибной 
компонент, представленный преимущественно мицелием. Длина 
мицелия грибов в дерново-подзолистой почве и черноземе уменьшалась 
с глубиной на порядок от сотен м/г к десяткам м/г почвы. Большая часть 
показателей структуры микробного пула углерода (численность грибов, 
длина мицелия грибов и актиномицетов, биомасса прокариот) были 
выше в черноземе залежи по сравнению с пашней, однако эти 
закономерности не наблюдались для дерново-подзолистой почвы. 
Биомасса и доля прокариот, а также длина мицелия были отмечены как 
показатели структуры микробного пула углерода, определяемые методом 
люминесцентной микроскопии, которые ассоциировались с разными 
типами землепользования для обоих типов почв. Очень высокие 
значения соотношений грибы/бактерии, вероятно, обусловлены 
недоучетом биомассы бактериальных клеток используемым методом. 
Несмотря на выявленные ограничения метода, люминесцентная 
микроскопия может быть использована в качестве дополнения к более 
точным методам оценки микробного пула углерода, позволяя определить 
размеры и структуру грибной биомассы в почвах разных типов 
сельскохозяйственного землепользования.  

Ключевые слова: биомасса микроорганизмов; прокариоты; грибы; 

мицелий; споры; пашня; залежь; сенокос; пастбище. 
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Abstract: Microbial biomass carbon (Cmic) is a biologically active pool of soil 

organic matter and a sensitive indicator that responds to changes in land use 
much earlier than total organic carbon content and other pools within it. The 

luminescent microscopy method allows assessing not only the total content of 

Cmic but also the structure of microbial biomass: the number of spores and the 

length of fungal mycelium, as well as the number of bacterial cells and 

actinomycete hyphae. The aim of the study was to determine the structure of 

the microbial carbon pool in the profiles of chernozem and sod-podzolic soils 

depending on the type of agricultural use (hayfield, abandoned land, arable 

land, pasture) using the luminescent microscopy method. The microbial 

carbon pool in the surface layer of sod-podzolic soil ranged from 260 to 450 

µg/g soil depending on the type of land use, in chernozem – 450 µg/g for 

abandoned land and 190 µg/g for arable land. Down to the depth of 30 cm, 

Cmic in chernozem under abandoned land was 1.5–3 times higher compared to 
arable land. In deeper horizons, differences between various land use types 

became less pronounced but persisted for a number of microbiological 

indicators. The fungal component, predominantly represented by mycelium, 

completely dominated (97–99%) the microbial carbon pool in both soils. The 

length of fungal mycelium in sod-podzolic soil and chernozem decreased by 

an order of magnitude with depth from hundreds of m/g to tens of m/g soil. 

Most indicators of the structure of the microbial carbon pool (fungal 

abundance, mycelium length of fungi and actinomycetes, prokaryotic biomass) 

were higher in chernozem under abandoned land compared to arable land; 

however, these patterns were not observed for sod-podzolic soil. Prokaryotic 

biomass and share, as well as mycelium length, were noted as the only 
indicators of the microbial carbon pool structure determined by the 

luminescent microscopy method that were associated with different types of 

land use for both considered soils. Very high fungi/bacteria ratios are likely 

due to the underestimation of bacterial cell biomass by the method used. 

Despite the identified limitations of the method, luminescent microscopy can 

be used as a supplement to more accurate methods for assessing the microbial 
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carbon pool, allowing the determination of the size and structure of fungal 

biomass in soils of different types of agricultural land use.  

Keywords: microbial biomass; prokaryotes; fungi; mycelium; spores; arable 

land; abandoned land; hayfield; pasture. 

ВВЕДЕНИЕ  

Почвенное органическое вещество (ПОВ) – крупнейший ре-

зервуар углерода на планете, важный депозитарий питательных 
элементов, основа плодородия и развития сельского хозяйства 

(Семенов, Когут, 2015; Liang et al., 2017). Одним из главных фак-

торов, определяющих уровень ПОВ является тип землепользова-
ния (Semenov et al., 2018; Семенов и др., 2023). Его смена в 

первую очередь влияет на растительный покров, характеристики 

углеродного пула, агрохимические и физико-химические свойства 

почвы, плодородие (Семенов, Когут, 2015), а также структуру пу-
лов ПОВ и почвенного микробиома (Добровольская и др., 2015; 

Лебедева и др, 2024). Углерод микробной биомассы (Смик) являет-

ся важным биологически активным пулом лабильного ПОВ, так 
как он прямо и косвенно воздействует на многие ферментативные, 

энергетические и биогеохимические процессы в почве, определяя 

скорость разложения ПОВ и интенсивность круговорота макро- и 
микроэлементов, секвестрацию и минерализацию органического 

углерода (Семенов, Когут, 2015; Добровольская и др., 2015; Бла-

годатская и др., 2016; Семенов и др., 2013, 2018, 2019). Доля мик-

робного пула в составе общего органического углерода (Сорг) 
обычно составляет 1–5%, при этом до 50–55% Сорг может иметь 

микробное происхождение (Семенов, Когут, 2015; Liang et al., 

2019; Angst et al., 2021; Никитин и др., 2022). Также Смик является 
чувствительным индикатором трансформации и деградации ПОВ 

(Благодатская и др., 2016; Семенов и др., 2013, 2019; Никитин и 

др., 2022), откликающимся на изменения в землепользовании го-
раздо раньше, чем содержание Сорг и других пулов в его составе 

(Курганова и др., 2009; Сушко и др., 2019; Семенов и др., 2023; 

Никитин и др., 2023). Поскольку влияние землепользования на 

запасы ПОВ проявляется замедленно, необходимы более чувстви-
тельные индикаторы, каковым является микробный пул углерода 

(Семенов, 2020; Никитин и др., 2023). 
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Определение микробного пула углерода возможно с помо-

щью широкого спектра подходов – прямых, физиологических, 

биохимических, биомаркерных и т. д. (Благодатская и др., 2016; 
Семенов и др., 2013, 2019, 2016; Никитин и др., 2022). Наиболее 

распространенным прямым методом оценки Смик служит люми-

несцентная микроскопия, которая позволяет оценить численность 

клеток микроорганизмов непосредственно в почве (Звягинцев, 
1991; Благодатская и др., 2016; Полянская и др., 2017, 2020). Кро-

ме того, люминесцентная микроскопия позволяет определить не 

только величину микробной биомассы, но и ее морфологию и 
структуру (численность, размер и форму клеток, длину мицелия, 

соотношение мицелий/споры и грибы/бактерии), которые напря-

мую связаны с процессами трансформации и минерализации ПОВ 

(Звягинцев, 1991; Добровольская и др., 2015; Семенов и др., 2023). 
Доминирование микобиоты и высокие значения отношения гри-

бы/прокариоты характерны для почв с большим секвестрирую-

щим потенциалом и низким C/N, а уменьшение отношения гри-
бы/бактерии говорит о снижении секвестрации углерода в почве 

(Семенов и др., 2023; Никитин и др., 2023). Тем не менее оценка 

индикаторной роли показателей микробного пула углерода и его 
структуры, получаемых с помощью люминесцентной микроско-

пии, до сих пор не проводилась для почв разных типов сельскохо-

зяйственного использования. 

Целью исследования была оценка структуры микробной 
биомассы в профилях чернозема и дерново-подзолистой почвы 

разных типов сельскохозяйственного землепользования (сенокос, 

залежь, пашня, пастбище) методом люминесцентной микроско-
пии.  

ОБЪЕКТЫ И МЕТОДЫ 

Первая группа объектов исследования находилась на полях 

ВНИИМЗ в Калининском районе Тверской области (пос. Эм-

маусс). Почвенный покров представлен дерново-подзолистыми 

почвами разной степени оглеения в зависимости от положения в 
элементах мезорельефа. На большей части поля в 1980-х годах 

проводились осушительные мелиоративные мероприятия. В усло-

виях крайне высокой почвенной пестроты выбрана схема отбора 
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крестом. Отбор образцов проводился в 5-кратной пространствен-

ной повторности в октябре 2022 г. на пашне (EM-28), пастбище 

(EM-35), сенокосе под многолетними травами (EM-21) и залежи 
(EM-24) с трех глубин (5–10 см, 10–20 см, 30–40 см), что обуслов-

лено мощностью гумусового горизонта в дерново-подзолистых 

почвах и формированием дернины в поверхностных слоях на за-

лежи, сенокосе и пастбище. Всего было отобрано 60 образцов 
дерново-подзолистых почв. 

Другая группа объектов исследования находилась на терри-

тории Биосферного полигона Института Географии РАН (Курская 
обл.). Почвенный покров представлен черноземами типичными 

южной лесостепной подзоны. Отбор образцов выполнен в 3-

кратной пространственной повторности в конце октября 2022 г. на 

залежи (VIPK-46, VIPK-47, VIPK-48) и пашне (VIPK-40, VIPK-42, 
VIPK-44) на глубинах 0–10 см, 20–30 см, 40–50 см, 60–70 см и 80–

90 см. Всего было отобрано 30 образцов черноземов. 

Площадки на дерново-подзолистых почвах и черноземах 
были подобраны исходя из схожести рельефа и литологии, чтобы 

вид угодья можно было считать основным фактором их различий. 

Содержание валового органического углерода (Cорг) оценено 
с помощью СNHS-анализатора (Leco 932, USA). Повторность ана-

лиза каждого образца – 3-кратная. 

Биомасса прокариот оценивалась с помощью метода люми-

несцентной микроскопии с применением флуоресцентного краси-
теля акридина оранжевого (микроскоп “Биомед 5 ПР ЛЮМ” (Рос-

сия)) при увеличении 1000× с масляной иммерсией (Звягинцев, 

1991). Десорбцию клеток с поверхности почвенных частиц прово-
дили при помощи ультразвуковой установки УЗДН-1 (2 мин., сила 

тока 0.40 А, частота 22 кГц) (Полянская и др., 2017). Расчет числа 

клеток прокариот на 1 г субстрата производили по формуле:  

N = S1×a×n/V×S2×C, 

где N-число клеток на 1 г субстрата; S1 – площадь препарата 

(мкм
2
); a – количество клеток в одном поле зрения (усреднение 

производится по всем препаратам); n – показатель разведения бак-
териальной смеси (мл); V – объем капли, наносимой на стекло 
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(мл); S2 – площадь поля зрения микроскопа (мкм
2
); C – навеска 

субстрата (г).  

Длину актиномицетного мицелия в 1 г образца (NМА) опре-
деляли по формуле:  

NМА = S1×a×n/v×S2×c×10
6
, 

где: S1 – площадь препарата (мкм
2
); а – средняя длина фрагментов 

актиномицетного мицелия в поле зрения (мкм); n – показатель 
разведения суспензии (мл); v – объем капли, наносимой на стекло 

(мл); S2 – площадь поля зрения микроскопа (мкм
2
); с – навеска об-

разца (г). 
Биомассу грибов определяли методом люминесцентной 

микроскопии с применением флуоресцентного красителя калько-

флуора белого (КБ) (Звягинцев, 1991; Полянская и др., 2017). Учет 

спор и длины мицелия осуществляли на люминесцентном микро-
скопе “Биомед 5 ПР ЛЮМ” (Россия) при увеличении 400×. Де-

сорбцию клеток с почвы проводили при помощи вортекса “MSV-

3500” (Латвия) при скорости 3500 об./мин. в течение 10 мин. Рас-
чет грибной биомассы (мг/г почвы) осуществляли, полагая, что 

плотность спор равна 0.837 г/см
3
, а плотность мицелия – 0.628 

г/см
3
 (Полянская, Звягинцев, 2005). Содержание грибной биомас-

сы на грамм сухой почвы рассчитывали с учетом ее влажности. 

Величины микробного пула углерода рассчитывались как сумма 

биомассы прокариот и грибов. Пространственное и аналитическое 

варьирование показателей на основе люминесцентной микроско-
пии в связи с их средним значением даны в приложении к статье 

(рисунки S10–S22, Приложение). 

Статистика и визуализация данных. Оценка влияния типа 
землепользования в каждом слое почвы на изученные показатели 

проводилась при помощи критерия Краскела–Уоллиса в про-

граммной среде R с помощью функции kruskal.test из базового па-
кета stats. Предварительно были оценены нормальность распреде-

лений остатков дисперсионного анализа с помощью теста Шапи-

ро–Уилка (функция shapiro.test базового пакета stats) и равенство 

дисперсий с помощью теста Левена (функция leveneTest из пакета 
car), и, поскольку некоторые изученные почвенные показатели не 

удовлетворяли условиям применимости более строгих статистиче-
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ских тестов (дисперсионного анализа), было решено применить 

тест Краскела–Уоллиса. Значимость попарных различий между 

вариантами оценена с помощью теста Данна (функция testDunn из 
пакета R FSA). Уровень значимости для описанных тестов принят 

равным 0.05. Диаграммы ящиков с усами построены с помощью 

пакета ggplot2 (Wickham, 2016) по следующей схеме: центральная 

линия – среднее значение по выборке, границы ящиков – среднее 
± стандартная ошибка среднего, усы – минимальное и максималь-

ное значение выборки. 

Для оценки взаимосвязей между характеристиками почвен-
ного микробного сообщества на основе данных люминесцентной 

микроскопии и типами землепользования был применен фактор-

ный анализ с использованием пакетов FactoMineR и factoextra 

(Kassambara, Mundt, 2020; Lê et al., 2008) и анализ связей (анализ 
графов, relevance networks) c помощью пакета mixOmics (Rohart et 

al., 2017) в программной среде R. В нашем случае этот метод ви-

зуализации основан на анализе PLS-DA и демонстрирует корреля-
цию переменных (данных люминесцентной микроскопии) с тем 

или иным типом землепользования.  

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 

Содержание общего органического углерода (Сорг) в 

верхнем слое дерново-подзолистых почв значительно изменялось 

в зависимости от типа землепользования и снижалось в ряду: се-
нокос под многолетними травами (2.3%) – залежь (1.9%) – пашня 

(1.4%) – пастбище (1.1%) (табл. 1). На глубине 10–20 см различия 

в содержании Сорг между разными типами землепользования со-

кращались, а на глубине 30–40 см увеличивалось пространствен-
ное варьирование содержания Сорг на участках сенокосов и зале-

жей. 

Содержание Сорг в черноземе под залежью в верхнем слое 
было выше по сравнению с изученным черноземом пашни – 5.0% 

и 3.7% соответственно (табл. 1), что показано в ряде работ (Семе-

нов и др., 2008, 2016; Курганова и др., 2009; Семенов, Когут, 2015; 

Semenov et al., 2018; Семенов, 2020). Однако уже на глубине 20–30 
см значения Сорг в черноземе залежи (3.6%) и пашне (3.4%) стати-

стически не различались. С увеличением глубины различия в со-
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держании Сорг в почве залежи и пашни полностью нивелирова-

лись, что согласуется с аналогичными работами по черноземам 

(Semenov et al., 2018; Булышева и др., 2020). 

Таблица 1. Содержание Сорг в почвах (n = 5 для дерново-подзолистых 

почв; n = 3 для черноземов) 

Table 1. The content of Corg in soils (n = 5 for soddy-podzolic soils; n = 3 for 

chernozems) 

Почва 
Тип  

землепользования 
глубина, см Сорг, % Ст. откл. 

Д
ер

н
о

во
-п

о
д
зо

л
и

ст
ая

 

Сенокос 

5–10 2.32 0.34 

10–20 1.84 0.66 

30–40 0.63 0.33 

Залежь 

5–10 1.89 0.42 

10–20 1.55 0.25 

30–40 0.44 0.33 

Пашня 

5–10 1.36 0.13 

10–20 1.23 0.10 

30–40 0.17 0.05 

Пастбище 

5–10 1.10 0.06 

10–20 0.98 0.07 

30–40 0.21 0.10 

Ч
ер

н
о
зе

м
 

Залежь 

0–10 5.01 0.71 

20–30 3.59 0.13 

40–50 2.56 0.26 

60–70 1.66 0.25 

80–90 1.26 0.09 

Пашня 

0–10 3.65 0.14 

20–30 3.41 0.13 

40–50 2.51 0.04 

60–70 1.66 0.17 

80–90 1.36 0.13 
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Общий микробный пул углерода в поверхностном слое 

дерново-подзолистых почв составлял от 258 до 456 мкг/г почвы в 

зависимости от типа землепользования (рис. S1, Приложение). На 
глубине 10–20 см микробный пул углерода не различался стати-

стически (269–334 мкг/г почвы) под залежью, пашней и сеноко-

сом, но значимо снижался до 184 мкг/г почвы под пастбищем 

(рис. S1). В слое 30–40 см микробный пул углерода резко умень-
шался под залежью, пашней и пастбищем до 76 мкг/г почвы, в то 

время как под сенокосом этот показатель был в 2 раза выше 

(170 мкг/г почвы). Это свидетельствует о влиянии типа землеполь-
зования на почвенный микробиом и микробный углерод на глу-

бине ниже 30 см, несмотря на то что глубина основной вспашки 

составляла 22 см, которая проводится (пашня), либо ранее прово-

дилась (сенокос, залежь, пастбище) для каждого исследуемого ти-
па землепользования. 

Общий микробный пул углерода в поверхностном слое чер-

нозема достигал 387 мкг/г для почвы залежи и 161 мкг/г для поч-
вы пашни (рис. S1). До глубины 30 см микробный углерод в чер-

ноземе залежи был в 1.5–3 раза выше (p < 0.05), чем в черноземе 

под пашней (рис. S1). С глубиной различия между черноземом 
залежи и пашни выравнивались. Влияние длительной вспашки на 

микробный углерод подпахотных слоев ранее было отмечено для 

черноземов Каменной Степи и бурых полупустынных почв (Se-

menov et al., 2018). 

Биомасса грибов в составе микробного пула углерода. В 

исследованных черноземах и дерново-подзолистых почвах в мик-

робной биомассе полностью преобладали (97–99%) грибы 
(рис. S2, S3, Приложение), поэтому характер распределения био-

массы грибов по глубинам и типам землепользования совпадал с 

таковым для общего микробного углерода (рис. 1). В дерново-
подзолистых почвах отмечалось значительное уменьшение био-

массы грибов на глубине 30–40 см для всех типов землепользова-

ния. Доля мицелия грибов в дерново-подзолистых почвах была 

идентична (54–61%) для всех типов землепользования в верхних 
10 см (рис. 2). Для слоя 30–40 см наибольшая доля мицелия была 

выявлена под сенокосом (до 51%), в остальных типах землеполь-
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зования составляла лишь 23–34% (рис. 2). 

 

Рис. 1. Биомасса грибов (споры + мицелий) в составе микробного пула 
углерода дерново-подзолистой почвы и чернозема разных типов  

землепользования на различных глубинах (N = 5 для дерново-

подзолистых почв; N = 3 для черноземов). 

Fig. 1. The total biomass of fungi (spores + mycelium) in the microbial carbon 

pool of soddy-podzolic soil and chernozem under different land use types at 

different depths (N = 5 for soddy-podzolic soils; N = 3 for chernozems). 

Доля мицелия в грибной биомассе в поверхностном слое 

черноземов залежи составляла 73%, пашни – 50% (рис. 2). Для 
слоя 20–30 см доля мицелия в черноземе под залежью составляла 

52%, под пашней – 38%. В слое 80–90 см доля мицелия в чернозе-

ме залежи составляла лишь 31%, а в черноземе под пашней мице-
лий не был выявлен. 

Длина мицелия грибов в дерново-подзолистой почве 

уменьшалась с глубиной от сотен м/г почвы к десяткам м/г почвы 

(рис. 3). В поверхностном слое длина мицелия в почве залежи, 
пашни и пастбища составляла 96–131 м/г почвы, сенокоса – 

206 м/г. В слое 30–40 см протяженность гиф микобиоты в почве 

залежи, пашни и пастбища составляла 21–27 м/г почвы, в то время 
как сенокоса – 104 м/г почвы. 
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Рис. 2. Доля мицелия грибов в общей грибной биомассе дерново-
подзолистой почвы и чернозема разных типов землепользования на 

различных глубинах (N = 5 для дерново-подзолистых почв; N = 3 для 

черноземов). 

Fig. 2. Proportion of fungal mycelium in the total fungal biomass of soddy-

podzolic soil and chernozem under different land use types at different depths 

(N = 5 for soddy-podzolic soils; N = 3 for chernozems). 

Длина мицелия грибов в поверхностном слое чернозема за-

лежи составляла 223 м/г почвы, пашни – 63 м/г почвы (p < 0.05). С 

увеличением глубины величина данного показателя сокращалась. 

В слое 20–30 см в почве залежи длина мицелия снижалась почти в 
2 раза (130 м/г почвы), в то время как под пашней почти не меня-

лась (52 м/г почвы). Более глубокие слои чернозема залежи также 

характеризовались большими значениями длины мицелия грибов 
по сравнению с черноземом пашни (рис. 3). 

Дерново-подзолистые почвы содержали 10
4
–10

5
 спор/г поч-

вы (рис. S4, Приложение). Основная часть пропагул микобиоты 
была представлена экземплярами мелких размеров в 2–3 мкм. 

Крупные пропагулы (5 мкм и более) были выявлены только в по-

верхностном слое дерново-подзолистой почвы залежи и сенокоса, 

составляя порядка 10
3
 клеток/г почвы. 

Образцы черноземов содержали 10
3
–10

4 
одноклеточных 

грибных пропагул (спор и дрожжей) на г почвы (рис. 4S). Большая 
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часть пропагул микобиоты была представлена мелкими формами 

(2–3 мкм), доля которых была больше в почве под пашней (до 

89%) по сравнению с залежью (до 76%). Крупные пропагулы 
(5 мкм и более) были выявлены только в почве залежи, числен-

ность которых составляла около 10
2 
клеток/г почвы. 

 
Рис. 3. Длина мицелия грибов в дерново-подзолистой почве и черноземе 
разных типов землепользования на различных глубинах (N = 5 для 

дерново-подзолистых почв; N = 3 для черноземов). 

Fig. 3. The length of fungal mycelium in soddy-podzolic soil and chernozem 

under different land use types at different depths (N = 5 for soddy-podzolic 

soils; N = 3 for chernozems). 

Биомасса прокариот в составе микробного пула углерода 
в верхнем слое дерново-подзолистой почвы была идентична 
(2.5 мкг/г почвы) под сенокосом, залежью и пашней, но значи-

тельно повышалась (до 4 мкг/г) под пастбищем (p < 0.05) (рис. 4). 

С глубиной тенденция к повышению величин биомассы прокариот 
в почве пастбища сохранялась. Биомасса прокариот в черноземе 

залежи была значительно выше по сравнению с почвой пашни для 

всех рассмотренных глубин (p < 0.05) (рис. 4). Протяженность ми-
целия актиномицетов в проанализированных черноземах и дерно-

во-подзолистых почвах составляла несколько десятков метров на г 

почвы (рис. S5, Приложение). 
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Рис. 4. Общая биомасса прокариот (одноклеточные формы + мицелий) в 

составе микробного пула углерода дерново-подзолистой почвы и 

чернозема разных типов землепользования на различных глубинах (N = 5 

для дерново-подзолистых почв; N = 3 для черноземов). 
Fig. 4. The total prokaryotic biomass (unicellar organisms + mycelium) in the 

microbial carbon pool of soddy-podzolic soil and chernozem under different 

land use types at different depths (N = 5 for soddy-podzolic soils; N = 3 for 

chernozems). 

По порядку значений биомасса прокариот в изученных чер-

ноземах и дерново-подзолистых почвах соответствует таковым 

для черноземов Башкортостана и дерново-подзолистых почв сред-
ней полосы России (Полянская и др., 2012, 2017; Никитин и др., 

2019), а также серо-гумусовым глеевым почвам Костромской об-

ласти (Полянская и др., 2020). Однако это на порядок выше по 
сравнению со значениями для черноземов Алтайского края и Че-

лябинской области (Полянская и др., 2016) и ниже, чем для обык-

новенных черноземов Каменной степи (Манучарова и др., 2005). 
Доля прокариот в общем микробном пуле углерода состави-

ла 1–3%. Полученные величины полностью соответствует тем, 

которые получаются в почвах при использовании метода люми-

несцентной микроскопии (Полянская и др., 2005; 2012; Ананьева и 
др., 2008). Тем не менее сравнение структуры микробной биомас-

сы, полученной методами люминесцентной микроскопии и инги-
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бирования антибиотиками субстрат-индуцированного дыхания, 

показало, что используемые методы дают принципиально разные 

значения вклада бактерий в общую микробную биомассу (1–3% 
по микроскопии и 26–48% по ингибированию дыхания соответ-

ственно) (Полянская и др., 2017). Использование метода каскад-

ной фильтрации показывает, что люминесцентная микроскопия 

может значительно недоучитывать количество бактериальных 
клеток и спор, и, как следствие, численность, биомассу и долю 

прокариот из-за неучтенных мелких форм бактериальных клеток 

(Полянская и др. 2017; 2020). Другой возможной причиной низких 
значений биомассы прокариот может служить коэффициент пере-

счета численности бактериальных клеток в углерод микробной 

биомассы, который основан на среднем объеме, плотности и диа-

метре бактериальной клетки. Таким образом, хотя люминесцент-
ная микроскопия может быть использована для определения об-

щего микробного углерода, определяемые величины прокариот-

ной биомассы и отношения грибы/бактерии сильно недоучитыва-
ются этим методом при существующем порядке их учета. 

Связь типов землепользования с микробными показате-

лями на основе люминесцентной микроскопии. Чтобы оценить 
влияние типа землепользования на состояние микробного пула 

углерода на основе данных люминесцентной микроскопии, для 

полученных переменных был проведен факторный анализ (рис. 6; 

рис. S6, S7, S8, Приложение). 
В случае дерново-подзолистой почвы первая и вторая ком-

поненты факторного анализа в сумме объясняли 51% вариации 

данных (рис. S6). Вдоль компоненты 1, которая объясняет 33.5% 
вариации переменных, разделились точки, связанные с глубиной 

отбора проб, а вдоль компоненты 2, объясняющей 17.6% вариа-

ции, разделились точки, связанные с рассматриваемыми типами 
землепользования (рис. S6). Таким образом, согласно результатам 

факторного анализа, в случае дерново-подзолистой почвы на из-

меренные показатели микробного пула углерода, полученные ме-

тодом люминесцентной микроскопии, существенно большее вли-
яние оказывает глубина отбора проб, нежели чем тип землеполь-

зования. 
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Тем не менее можно выделить показатели, изменение кото-

рых было связано со сменой типа землепользования. Наибольшее 

влияние на компоненту 2 (ось Y), по которой идет разделение то-
чек по типам землепользования, оказывают биомасса одноклеточ-

ных прокариот, доля одноклеточных прокариот, доля мицелия ак-

тиномицетов и суммарная масса прокариот (рис. 5). Данные мик-

робиологические показатели достигали максимальных значений в 
почве пастбища (рис. 4; рис. S2, S5). Для других типов землеполь-

зования (сенокос, залежь, пашня), которые не образовывали вы-

раженных скоплений точек (рис. S6), связанные с ними параметры 
люминесцентной микроскопии по результатам факторного анали-

за не были выявлены. Таким образом, биомасса и доля прокариот, 

а также длина мицелия были основными показателями структуры 

микробного пула углерода, связанными с изменением типа земле-
пользования для обоих типов почв. 

По результатам анализа PLS-DA c визуализацией relevance 

network были отмечены корреляции некоторых других параметров 
с типами землепользования (рис. 6). Влияние сенокоса выража-

лось в увеличении доли мицелия грибов и биомассы мицелия, а 

также уменьшении доли мелких спор (рис. 6). Для почвы залежи 
было отмечено уменьшение массы одноклеточных прокариот, 

суммарной массы прокариот и увеличение доли мицелия актино-

мицетов. В почве пашни уменьшалась биомасса одноклеточных 

прокариот и доля одноклеточных прокариот. Однако, как правило, 
эти закономерности носили спорадический характер (отмечены 

только в отдельных слоях) и были слабо выражены (имеют низкий 

уровень корреляции) из-за сильной дисперсии переменных. 
Результаты факторного анализа для чернозема согласуются 

с результатами анализа PLS-DA c визуализацией relevance network 

(рис. 5, 6, 7). Помимо выделенных выше микробиологических по-
казателей на основе люминесцентной микроскопии, изменение 

которых было ассоциировано с разными типами землепользова-

ния, ряд показателей почти не изменялся в черноземе разного зем-

лепользования: доля грибов, доля прокариот, биомасса спор, био-
масса спор размером 3 мкм, биомасса спор размером 2 мкм 

(рис. 7). 
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Рис. 5. Вклад показателей люминесцентной микроскопии в выявление 

различий между исследуемыми черноземами и дерново-подзолистыми 

почвами на основе факторного анализа. 

Fig. 5. The contribution of luminescent microscopy indicators to the revealing 

of differences between the studied chernozems and soddy-podzolic soils based 

on factor analysis. 
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Рис. 6. График связей на основе PLS-DA, демонстрирующий корреляции 

между параметрами люминесцентной микроскопии и типом землепользо-

вания для дерново-подзолистой почвы. Узлы представляют собой 

переменные, а цвет линий обозначает направление корреляции: красный 

цвет указывает на положительную связь с типом землепользования, 

зеленый – на отрицательную связь. Яркость цвета означает силу связи. 

Fig. 6. A PLS-DA-based linkage plot illustrates the relationship between 

fluorescence microscopy parameters and land use type for soddy-podzolic soil. 

Nodes represent variables, and line colors indicate the correlation direction: red 

for a positive relationship with land use type and green for a negative one. The 

brightness of the color reflects the strength of the relationship. 
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Рис. 7. График связей на основе PLS-DA, демонстрирующий корреляции 
между параметрами люминесцентной микроскопии и типом 

землепользования для чернозема. Узлы представляют собой переменные, 

а цвет линий обозначает направление корреляции: красный цвет 

указывает на положительную связь с типом землепользования, зеленый – 

на отрицательную связь. Яркость цвета означает силу связи.  

Fig. 7. A PLS-DA-based linkage plot illustrates the relationship between fluo-

rescence microscopy parameters and land use type for chernozem. Nodes rep-

resent variables, and line colors indicate the correlation direction: red for a pos-

itive relationship with land use type and green for a negative one. The bright-

ness of the color reflects the strength of the relationship. 
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ЗАКЛЮЧЕНИЕ  

Использование метода люминесцентной микроскопии позво-

лило выявить значительное влияние землепользования на размеры 
и соотношения различных компонентов в составе микробного пула 

углерода в черноземе. Большинство показателей структуры мик-

робной биомассы (численность грибов, длина мицелия грибов и 

актиномицетов, биомасса прокариот) были выше в черноземе за-
лежи, по сравнению с пашней, при этом различия проявлялись для 

более глубинных слоев 60–70 и 80–90 см. Несмотря на различия в 

содержании общего органического углерода, дерново-подзолистая 
почва разных типов сельскохозяйственного использования не от-

личалась по большей части микробиологических показателей, диа-

гностируемых методом люминесцентной микроскопии. 

Факторный анализ показал, что биомасса и доля прокариот, а 
также длина мицелия являются показателями структуры микроб-

ного пула углерода, определяемыми методом люминесцентной 

микроскопии, которые были ассоциированы с разными типами 
землепользования для обоих типов почв. Выявленные крайне вы-

сокие значения соотношений грибы/бактерии, по-видимому, обу-

словлены недооценкой биомассы бактериальных клеток использу-
емым методом. Тем не менее полученные результаты демонстри-

руют, что люминесцентная микроскопия может быть использована 

в качестве дополнительного подхода к более точным методам 

оценки микробного пула углерода и позволяет определить влияние 
различных типов сельскохозяйственного землепользования на раз-

меры и структуру микробной биомассы в почвах.  
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ПРИЛОЖЕНИЕ 

 

 

 
Рис. S1. Общий микробный пул углерода (прокариоты+грибы) в дерново-

подзолистой почве и черноземе разных типов землепользования на 

различных глубинах (N = 5 для дерново-подзолистых почв; N = 3 для 

черноземов). 
Fig. S1. The total microbial biomass carbon (prokaryotes + fungi) in soddy-

podzolic soil and chernozem under different land use types at different depths 

(N = 5 for soddy-podzolic soils; N = 3 for chernozems). 
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Рис. S2. Биомасса одноклеточных прокариот в дерново-подзолистой 

почве и черноземе разных типов землепользования на различных 

глубинах (N = 5 для дерново-подзолистых почв; N = 3 для черноземов). 

Fig. S2. The biomass of unicellular prokaryotes in soddy-podzolic soil and 

chernozem under different land use types at different depths (N = 5 for soddy-
podzolic soils; N = 3 for chernozems). 

 

 

 
Рис. S3. Доля прокариот в общей микробной биомассе в дерново-
подзолистой почве и черноземе разных типов землепользования на 

различных глубинах (N = 5 для дерново-подзолистых почв; N = 3 для 

черноземов). 

Fig. S3. Proportion of prokaryotic biomass in total microbial biomass in soddy-

podzolic soil and chernozem under different land use types at different depths 

(N = 5 for soddy-podzolic soils; N = 3 for chernozems). 
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Рис. S4. Биомасса спор грибов в дерново-подзолистой почве и черноземе 
разных типов землепользования на различных глубинах (N = 5 для 

дерново-подзолистых почв; N = 3 для черноземов). 

Fig. S4. The biomass of fungal spores in soddy-podzolic soil and chernozem 

under different land use types at different depths (N = 5 for soddy-podzolic 

soils; N = 3 for chernozems). 

 

 

Рис. S5. Длина мицелия актиномицетов в дерново-подзолистой почве и 

черноземе разных типов землепользования на различных глубинах (N = 

5 для дерново-подзолистых почв; N = 3 для черноземов). 

Fig. S5. The length of actynomycete mycelium in soddy-podzolic soil and 

chernozem under different land use types at different depths (N = 5 for soddy-
podzolic soils; N = 3 for chernozems). 
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Рис. S6. Факторный анализ показателей люминесцентной микроскопии 

для дерново-подзолистой почвы и чернозема. 

Fig. S6. Factor analysis of luminescent microscopy indicators for soddy-

podzolic soil and chernozem. 
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Рис. S7. Результаты факторного анализа для дерново-подзолистой почвы: 

влияние переменных на оси X и Y. 

Fig. S7. Results of factor analysis for sod-podzolic soil: influence of variables 

on X and Y axes. 

 

 

 



Бюллетень Почвенного института им. В.В. Докучаева. 2025. Вып. 126 
Dokuchaev Soil Bulletin, 2025, 126 

 188 

 

 

 
 

Рис. S8. Результаты факторного анализа для чернозема: влияние 

переменных на оси X и Y. 

Fig. S8. Results of factor analysis for chernozem: influence of variables on X 

and Y axes. 
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Рис. S9. Факторный анализ показателей люминесцентной микроскопии 

по методу главных компонент для дерново-подзолистой почвы и 

чернозема. 
Fig. S9. Factor analysis of luminescence microscopy indices by principal 

component method for sod-podzolic soil and chernozem. 
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Пространственное варьирование показателей на основе 

люминесцентной микроскопии в связи с их средним значени-

ем. Ранее нами было показано, что величина стандартного откло-
нения увеличивается по мере увеличения среднего значения Cорг, в 

то время как коэффициент вариации незначимо изменяется при 

изменении среднего значения Cорг как при группировке данных по 

виду угодья для всей совокупности данных, так и при группировке 
по разным типам почв. Для большинства микробиологических по-

казателей структуры микробного пула углерода был характерен 

схожий тип связи между величинами средних значений и соответ-
ствующими стандартными отклонениями, за исключением удель-

ных значений (долей) и общей биомассы прокариот (рис. S10–S21). 

Как и в случае с Сорг, коэффициенты вариации практически не из-

менялись при увеличении средних значений рассматриваемых по-
казателей, находясь на уровне 20–40%, однако повышаясь вплоть 

до 100% в некоторых участках отбора (рис. S10–S21). Стандартное 

отклонение для аналитических повторностей составляло в среднем 
3–10% от средних значений величин (рис. S22). 
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Рис. S10. Связь средних значений длины мицелия со А) стандартными 

отклонениями и Б) коэффициентами вариации в исследуемой группе 

образцов (N = 90). 

Fig. S10. Correlation of mean mycelial length values with A) standard 

deviations and Б) coefficients of variation in the studied samples (N = 90). 
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Рис. S11. Связь средних значений биомассы спор грибов диаметром до 2 

мкм со А) стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 

Fig. S11. Correlation of mean values of fungal spore biomass up to 2 μm in 

diameter with A) standard deviations and Б) coefficients of variation in the 

studied samples (N = 90). 
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Рис. S12. Связь средних значений биомассы спор грибов диаметром 3 

мкм со А) стандартными отклонениями и Б) коэффициентами вариации в 
исследуемой группе образцов (N = 90). 

Fig. S12. Correlation of mean values of 3 μm diameter fungal spore biomass 

with A) standard deviations and Б) coefficients of variation in the studied 

samples (N = 90). 
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Рис. S13. Связь средних значений биомассы спор грибов диаметром 5 
мкм со А) стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 

Fig. S13. Correlation of mean values of 5 μm diameter fungal spore biomass 

with A) standard deviations and Б) coefficients of variation in the studied 

samples (N = 90). 
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Рис. S14. Связь средних значений биомассы спор грибов диаметром 7 

мкм со А) стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 

Fig. S14. Correlation of mean values of 7 μm diameter fungal spore biomass 

with A) standard deviations and Б) coefficients of variation in the studied 

samples (N = 90). 
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Рис. S15. Связь средних значений биомассы мицелия грибов со А) 

стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 

Fig. S15. Correlation of mean values of fungal mycelial biomass with A) 

standard deviations and Б) coefficients of variation in the studied samples (N = 

90). 
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Рис. S16. Связь средних значений биомассы спор грибов со А) 

стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 
Fig. S16. Correlation of mean values of fungal spore biomass with A) standard 

deviations and Б) coefficients of variation in the studied samples (N = 90). 
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Рис. S17. Связь средних значений общей биомассы грибов со А) 

стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 

Fig. S17. Correlation of mean values of total fungal biomass with A) standard 

deviations and Б) coefficients of variation in the studied samples (N = 90). 
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Рис. S18. Связь средних значений доли грибных спор со А) стандартными 

отклонениями и Б) коэффициентами вариации в исследуемой группе 

образцов (N = 90). 

Fig. S18. Correlation of mean values of fungal spore fraction with A) standard 

deviations and Б) coefficients of variation in the studied samples (N = 90). 
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Рис. S19. Связь средних значений доли грибного мицелия со А) 

стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 

Fig. S19. Correlation of mean values of fungal mycelium fraction with A) 

standard deviations and Б) coefficients of variation in the studied samples (N = 

90). 
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Рис. S20. Связь средних значений длины мицелия актиномицетов со А) 

стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 

Fig. S20. Correlation of mean values of actinomycete mycelial length with A) 

standard deviations and Б) coefficients of variation in the studied samples (N = 

90). 
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Рис. S21. Связь средних значений общей биомассы прокариот со А) 

стандартными отклонениями и Б) коэффициентами вариации в 

исследуемой группе образцов (N = 90). 

Fig. S21. Correlation of mean values of total prokaryote biomass with A) 

standard deviations and Б) coefficients of variation in the studied samples (N = 

90). 
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Рис. S22. Связь средних значений для аналитических повторностей А) 
количества клеток прокариот и Б) длины мицелия актиномицетов со 

стандартными отклонениями на основе 60 полей зрения микроскопа в 

исследуемой группе образцов (N = 90). 

Fig. S22. Correlation of mean values of total prokaryotic biomass with A) 

standard deviations and Б) coefficients of variation in the studied samples (N = 

90). 


