Pyrogenic degradation and carbon loss in cut-over drained peatland
https://doi.org/10.19047/0136-1694-2025-125-78-110
Abstract
Modern climate change exacerbates the problem of peat fires and requires a unified methodological approach for assessing carbon losses. The study was conducted in 2024–2025 on the territory of a developed high-moor peat deposit that was affected by fires in 2011 and is located within the Kaliningrad region (South-Eastern Baltic region). The methodology combines traditional approaches of soil science (profile method) with geobotanical techniques of revealing the indicator role of woody vegetation in determining the depth of burning and precipitation of the post-pyrogenic surface. As a basis for the applied assessment of pyrogenically altered soils, the classification of the intensity of soil fires by the depth of burning of the peat layer, adopted in the field of forest pyrology, is used. Using the example of two test sites with different residual peat deposits, organic profile thickness, and local drainage features, we studied carbon losses in the cavalier strip and on peat maps. It was shown that weak fires cause pyrogenic degradation of the upper layers of peat soils, resulting in losses ranging from 5.31 to 20.2 kg C/m2. In medium-intensity fires, pyrogenic degradation affects both the upper and lower layers of the peat profile, resulting in the formation of underground combustion cavities and thermally altered peat horizons. Carbon losses increase to 24.5–36.7 kg C/m2. In the areas of strong fires, the entire peat profile, which was originally a mixed-type deposit, undergoes pyrogenic degradation with an irreversible loss of most of the horizons and a total carbon loss of 50.36–65.40 kg C/m2. The areas of strong fires are confined to the soils of the cavalier. In the spatial aspect, carbon losses are composed of the share of fire foci of different strength in the overall mosaic pattern of the post-pyrogenic surface. A dense network of open shallow channels contributes to the rapid spread of fire into the peatland along the cavalier, which ultimately leads to high area-based carbon losses due to deeper pyrogenic degradation of soils on peat maps.
About the Author
О. A. AntsiferovaRussian Federation
14 A. Nevskogo St., Kaliningrad 236041; 1 Sovetsky Prospekt, Kaliningrad 236022
References
1. Antsiferova O.A., Pochvy Zamlandskogo poluostrova i ikh antropogennoye izmeneniye. Chast' 2. Dernovo-gleyevyye, allyuvial'nyye, bolotnyye, postplanirovochnyye, gorodskiye pochvy. Struktura pochvennogo pokrova (Soils of the Samland Peninsula and their anthropogenic change. Part 2. Sod-gley, alluvial, bog, post-planning, urban soils. Soil cover structure), Kaliningrad: Izd-vo FGBOU VPO “KGTU”, 2008, 424 p.
2. Vadyunina A.F., Korchagina Z.A., Metody issledovaniya fizicheskikh svoystv pochv (Methods for studying the physical properties of soils), Moscow: Agropromizdat, 1986, 415 p.
3. Orlyonok V.V. (Ed.), Geograficheskiy atlas Kaliningradskoy oblasti (Geographical atlas of the Kaliningrad region), Kaliningrad: Izd-vo KGU, 2002, 276 p.
4. Glukhova T.V., Sirin A.A., Poteri pochvennogo ugleroda pri pozhare na osushennom lesnom verkhovom bolote (Losses of soil carbon during a fire in a drained forested raised bog), Pochvovedeniye, 2018, No. 5, рр. 580–588, DOI: https://doi.org/10.7868/S0032180X18050076.
5. GOST 11306. Torf i produkty ego pererabotki. Metody opredeleniya zol'nosti (State standard of the Russian Federation 11306. Peat and its processed products. Methods for determining ash content), Moscow, Rosstandart, 2013, 8 p.
6. Grishin A.M., Golovanov A.N., Sukov Ya.V., Preys Yu.I., Eksperimental'noye issledovaniye protsessov zazhiganiya i goreniya torfa (Experimental study of peat ignition and combustion processes), Inzhenerno-fizicheskiy zhurnal, 2006, Vol. 79, No. 3, pp. 137–142.
7. Efremova T.T., Pimenov A.V., Efremov S.P., Avrova A.F., Postpirogennaya mozaichnost' fiziko-khimicheskikh svoystv i poter' ugleroda v lesnykh pochvakh zabolochennoy doliny Kuznetskogo Alatau (Post-pyrogenic mosaicism of physicochemical properties and carbon losses in forest soils of the swampy valley of the Kuznetsk Alatau), Sibirskiy lesnoy zhurnal, 2021, No. 6, pp. 18–29, DOI: https://doi.org/10.15372/SJFS20210602.
8. Zaydel'man F.R., Metody ekologo-meliorativnykh izyskaniy i issledovaniy pochv (Methods of ecological and meliorative surveys and soil studies), Moscow: KolosS, 2008, 486 p.
9. Zaydel'man F.R., Romanov S.V., Ekologo-gidrotermicheskaya otsenka pirogennykh pochv vyrabotannykh torfyanykh mestorozhdeniy (Ecological and hydrothermal assessment of pyrogenic soils of developed peat deposits), Pochvovedeniye, 2007, No. 1, pp. 93–105.
10. Zaydel'man F.R., Shvarov A.P., Pirogennaya i gidrotermicheskaya degradatsiya torfyanykh pochv, ikh agroekologiya, peschanyye kul'tury zemledeliya, rekul'tivatsiya (Pyrogenic and hydrothermal degradation of peat soils, their agroecology, sandy crops of agriculture, reclamation), Moscow: Izd-vo MGU, 2002, 168 p.
11. Zalesov S.V., Lesnaya pirologiya (Forest pyrology), Ekaterinburg: UGLTU, 396 p.
12. Isaeva L.K., Namestnikova O.V., Solovyov S.V., Sulimenko V.A., Shilin S.A., Pozharnaya i ekologicheskaya opasnost' torfyanikov (Fire and environmental hazards of peatlands), Pozhary i chrezvychaynyye situatsii: predotvrashcheniye, likvidatsiya, 2010, No. 3, pp. 29–35.
13. Orlenok V., Fedorov G. (Ed.), Kaliningradskaya oblast', Geograficheskiy atlas (Kaliningrad Region. Geographical Atlas), Kaliningrad: Masterskaya “Kollektsiya”, 2011, 96 p.
14. Guleva S.K., Ol'cheva A.V. (Ed.), Karbonovyye poligony: monitoring, geoinformatsionnyye sistemy, sekvestratsionnyye tekhnologii (Carbon polygons: monitoring, geoinformation systems, sequestration technologies), Moscow: Nauchnyy mir, 2025, 420 p.
15. Egorov V.V., Fridland V.M., Ivanova E.N., Rozov N.N., Klassifikaciâ i diagnostika počv SSSR (Classification and diagnostics of soils of the USSR), Moscow: Kolos, 1977, 224 p.
16. Konyushkov D.E., Ananko T.V., Gerasimova M.I., Savitskaya N.V., Chuvanov S.V., Soil orders and their areas on the updated soil map of the Russian Federation, 1 : 2.5 M scale, Dokuchaev Soil Bulletin, 2022, Vol. 112, pp. 73–121, DOI: https://doi.org/10.19047/0136-1694-2022-112-73-121.
17. Kurbatskiy N.P., Tekhnika i taktika tusheniya lesnykh pozharov (Technique and tactics of extinguishing forest fires), Moscow: Goslesbumizdat, 1962, 154 p.
18. Medvedeva M.A., Itkin V.Yu., Sirin A.A., Analiz pokazateley temperaturnykh anomaliy dlya vyyavleniya torfyanykh pozharov (Analysis of temperature anomaly indicators for detecting peat fires), Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, Vol. 20, No. 6, pp. 92–116, DOI: https://doi.org/10.21046/2070-7401-2023-20-6-92-116.
19. Metodika tusheniya landshaftnykh pozharov (Methodology for extinguishing landscape fires) (approved by the Ministry of Emergency Situations on September 14, 2015 No. 2-4-87-32-LB), Moscow, 2015, 48 p.
20. Mokryak A.V., Pariyskaya A.Yu., Problemy tleyushchikh torfyanykh pozharov v lesakh i Arktike (Problems of smoldering peat fires in forests and the Arctic), Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal, 2021, No. 10, pp. 159–162, DOI: https://doi.org/10.23670/IRJ.2021.112.10.027.
21. Ponomareva V.V., Plotnikova T.A., Metodicheskiye ukazaniya po opredeleniyu soderzhaniya i sostava gumusa v pochvakh (mineral'nykh i torfyanykh) (Methodical instructions for determining the content and composition of humus in soils (mineral and peat)), Leningrad: Izd-vo VASKHNIL, 1975, 105 p.
22. Medvedev V.A., Alekseyev F.Ye. (compillation), Priroda Kaliningradskoy oblasti. Vodnyye ob"yekty (Baltiyskoye more, laguny, bolota). Spravochnoye posobiye (Nature of the Kaliningrad Region. Water Bodies (the Baltic Sea, Lagoons, Marshes). Reference Manual), Kaliningrad: Istok, 2015, 104 p.
23. Kuksin G.V., Kreydlin M.L., Petrenko Yu.B. et al., Rekomendatsii po tusheniyu torfyanykh bolot (Recommendations for extinguishing drained peat bogs), Moscow: FAU DPO VIPKLH, 2020, 109 p.
24. Sirin A.A., Makarov D.A., Gummert I., Maslov A.A., Gul'be Ya.I., Glubina progoraniya torfa i poteri ugleroda pri lesnom podzemnom pozhare (Depth of peat combustion and carbon losses during underground forest fire), Lesovedenie, 2019, No. 5, pp. 410–422, DOI: https://doi.org/10.1134/S0024114819050097.
25. Smol'yaninov S.I., Belikhmayyer A.Ya., Ikrin V.M., Kinetika gazovydeleniya pri termicheskom razlozhenii torfa (Kinetics of gas evolution during thermal decomposition of peat), Izvestiya Tomskogo politekhnicheskogo instituta, 1977, Vol. 300, pp. 13–15.
26. Zalesov S.V., Kuksin G.V., Sekerin I.M. Sposoby tusheniya torfyanykh pozharov (Methods of extinguishing peat fires), Ekaterinburg: UGLTU, 2024, 89 p.
27. Khoroshavin L.B., Medvedev O.A., Belyakov V.A., Torf: vozgoraniye torfa, tusheniye torfyanikov i torfokompozity (Peat: peat fires, peatland fire extinguishing and peat composites), EMERCOM of Russia, Moscow: FGBU VNII GOCHS (FTS), 2013, 256 p.
28. Olenin A.S., Torfyanoy fond Kaliningradskoy oblasti (The Peat Stock Cadastre of the Kaliningrad Region), Moscow, 1952, 100 p.
29. Chernova O.V., Ryzhova I.M., Podvezennaya M.A., Opyt regional'noy otsenki izmeneniy zapasov ugleroda v pochvakh yuzhnoy taygi i lesostepi za istoricheskiy period (Experience of regional assessment of changes in carbon reserves in soils of the southern taiga and forest-steppe over the historical period), Pochvovedeniye, 2016, No. 8, pp. 1013–1028.
30. Shchepashchenko D.G., Mukhortova L.V., Shvidenko A.Z., Vedrova E.F., Zapasy organicheskogo ugleroda v pochvakh Rossii (Organic carbon reserves in soils of Russia), Pochvovedeniye, 2013, No. 2, pp. 123–132.
31. Antsiferova O., Napreenko M.; Napreenko-Dorokhova T., Transformation of Soils and Mire Community Reestablishment Potential in Disturbed Abandoned Peatland: A Case Study from the Kaliningrad Region, Russia, Land, 2023, No. 12, Vol. 1880, DOI: https://doi.org/10.3390/land12101880.
32. Che Azmi N.A., Mohd Apandi N.A., Rashid A.S., Carbon emissions from the peat fire problem – a review, Environ Sci Pollut Res, 2021, Vol. 28, pp. 16948–16961, DOI: https://doi.org/10.1007/s11356-021-12886-x.
33. Davies G.M., Gray A., Rein G., Legg C.J., Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland, Forest Ecology and Management, 2013, Vol. 308, pp. 169–177.
34. Hudspith V.A, Belcher C.M., Yearsley J.M., Charring temperatures are driven by the fuel types burned in a peatland wildfire, Front. Plant Sci., 2014, Vol. 5, DOI: https://doi.org/10.3389/fpls.2014.00714.
35. Napreenko M., Kileso A., Napreenko-Dorokhova T., Antsiferova O., Bashirova L., Goltsvert G., Carbon fux inventories on disturbed peatlands as part of the Carbon Supersite Programme in the Baltic Region, Int. J. Environ. Sci. Technol, 2024, DOI: https://doi.org/10.1007/s13762-024-06200-8.
36. Poulter В., Christensen N.L., Halpin P.N., Carbon emissions from а temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases, Journal Geophys. Res, 2006, Vol. 111, Iss. 6, pp. 11.
37. Reddy A.D., Hawbaker T.J., Wurster F., Zhua Z., Wardd S., Newcombd D., Murray R., Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal, Remote Sensing of Environment, 2015, Vol. 170, pp. 306–316.
38. Rein G., Huang X., Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives, Current Opinion in Environmental Science & Health, 2021, Vol. 24, DOI: https://doi.org/10.1016/j.coesh.2021.100296.
39. Schmidt A., Ellsworth L.M., Boisen G.A., Novita N., Malik A., Gangga A., Albar I., Dwi Nurhayati A., Putra R.R., Asyhari A., Kauffman J.B., Fire frequency, intensity, and burn severity in Kalimantan’s threatened Peatland areas over two Decades, Front. For. Glob. Change, 2024, Vol. 7, DOI: https://doi.org/10.3389/ffgc.2024.1221797.
40. Sirin A., Maslov A., Makarov D., Gulbe Y., Joosten H., Assessing Wood and Soil Carbon Losses from a Forest-Peat Fire in the Boreo-Nemoral Zone, Forests, 2021, No. 12, Vol. 880, DOI: https://doi.org/10.3390/f12070880.
41. Turetsky M.R., Benscoter B., Page S., Rein G., van der Werf G.R., Watts A., Global vulnerability of peatlands to f ire and carbon loss, Nature Geoscience, 2015, Vol. 8(1), pp. 11–14, DOI: https://doi.org/10.3390/f1207088010.1038/ngeo2325.
42. Turetsky M.R., Wieder R.K., A direct approach to quantifying organic matter lost as a result of peatland wildfire, Can. J. Forest Res, 2001, Vol. 31, pp. 363–366, DOI: https://doi.org/10.1139/cjfr-31-2-363.
43. Wilkinson S.L., Andersen R., Moore P.A., Davidson S.J., Granath G., Waddington J.M., Wildfire and degradation accelerate northern peatland carbon release, Nat. Clim. Chang, 2023, Vol. 13, pp. 456–460, DOI: https://doi.org/10.1038/s41558-023-01657-w.
44. World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps, Anjos L., Gaistardo C., Deckers J., Dondeyne S., Eberhardt E., Gerasimova M., Harms B., Jones A., Krasilnikov P., Reinsch T., Vargas R., Zhang G. (Ed.), Schad P., Van Huyssteen C., Micheli E. Rome (Italy), FAO, 2015, 192 p.
Supplementary files
Review
For citations:
Antsiferova О.A. Pyrogenic degradation and carbon loss in cut-over drained peatland. Dokuchaev Soil Bulletin. 2025;(125):78-110. (In Russ.) https://doi.org/10.19047/0136-1694-2025-125-78-110





































