Preview

Dokuchaev Soil Bulletin

Advanced search

Dry sieving analysis of soil by vibratory sieve shaker: modification and optimization

https://doi.org/10.19047/0136-1694-2019-96-149-177

Abstract

This study performs a methodical experiment on adaptation and unification of soil dry sieving analysis. The analysis is based on the Savvinov dry sieving method that uses 0.5-1.5 kg air-dried soil samples which are passed through the 10, 7, 5, 3, 2, 1, 0.5, 0.25 mm sieves. The studied soils are silt loam Eutric Retisol and Haplic Chernozem. From each object, 50 kg of fresh soil was sampled from the plow layer (lm2 area). Air-dried soil subsamples of 500 ± 0.5 g were used for analysis, clods bigger than 50 mm were gently crushed by pestle with rubber tip. The sieving parameters were the following: 50 Hz vibration frequency - 3000 rpm (depend on current), from 0.5 to 2.5 mm vibration amplitude and from 0.5 to 5 minutes sieving time. Sieve shaker mechanical work (J) was calculated for each mode. The data approximation was carried out by means of the asymptotic regression function. An optimal dry sieving mode was defined for each soil: Eutric Retisol - 1 mm vibration amplitude during 1 minute, Haplic Chernozem - 2.5 mm vibration amplitude during 2 minutes. In the case of sandy soils dry sieving doesn't require much effort. Therefore, in this experiment only fine macrostructure soils were selected (11-16 % < 2 um clay by laser diffraction method). As a result, the unified dry sieving mode of vibratory sieve shakers was developed which is applicable for all studied soils: 2.5 mm vibration amplitude during 2 minutes and 50 Hz frequency when 500 g air-dried soil sample is used.

About the Authors

D. S. Fomin
V.V. Dokuchaev Soil Science Institute
Russian Federation

119017, Moscow, Pyzhevskiy per., 7, build. 2



I. A. Valdes-Korovkin
V.V. Dokuchaev Soil Science Institute; Lomonosov Moscow State University
Russian Federation

119017, Moscow, Pyzhevskiy per., 7, build. 2; 119991, Moscow, Leninskie Gory, 1-12



A. P. Holub
Institute of Mechanics, Lomonosov Moscow State University
Russian Federation

119192, Moscow, Michurinskiy prospekt, 1



A. V. Yudina
V.V. Dokuchaev Soil Science Institute
Russian Federation

119017, Moscow, Pyzhevskiy per., 7, build. 2



References

1. Baeva Yu.I., Kurganova I.N., Lopes De Gerenyu V.O., Ovsepyan L.A., Telesnina V.M., Tsvetkova Yu.D., Change in aggregate structure of various soil types during the succession of abandoned lands, Dokuchaev Soil Bulletin, 2017, No. 88, pp. 47-74, DOI: 10.19047/0136-1694-2017-88-47-74.

2. Vadyunina A.F., Korchagina Z.A., Metody opredeleniya fizicheskikh svoystv pochv i gruntov (V pole i laboratorii) (Methods for determining the physical properties of soils (In the field and laboratory)), Moscow: Vysshaya shkola, 1961, 343 p.

3. Vilenskiy D.G., K metodike issledovaniya prochnosti pochv pri izuchenii pochvennoy erozii (To the method of studying the strength of soils in the study of soil erosion), Pochvovedenie, 1935, Vol. 5-6, No. 115, pp. 789-796.

4. Vil'yams V.R., Lektsii po pochvovedeniyu (Lectures on soil science), Moscow: Tipografiya obshchestva rasprostraneniya poleznykh knig, 1897, 260 p.

5. Vil'yams V.R., Kurs obshchego zemledeliya (obshchaya kul’tura) (The course of general agriculture (general culture)), Moscow: Tipografiya G. Lissnera and A. Geshelya, 1901, 190 p.

6. Vil'yams V.R., Kurs obshchego zemledeliya (The course of general agriculture), Moscow: Izdatel'stvo studencheskogo Agronomicheskogo Kruzhka po izucheniyu Smolenskoi gubernii, 1910, 203 p.

7. Vil'yams V.R., Obshcheye zemledeliye s osnovami pochvovedeniya (General agriculture with the basics of soil science), Moscow: Novyi agronom, 1927, 494 p.

8. Voronin A.D., Strukturno-funktsional'naya gidrofizika pochv (Structural and functional soil hydrophysics), Moscow: Izdatel'stvo Moskovskogo universiteta, 1984, 204 p.

9. Kachinskiy N.A., Fizika pochv (Soil physics), Moscow: Vysshaya shkola, 1965, 319 p.

10. Revut I.B., Fizika v zemledelii (Physics in agriculture), Moscow: Fizmatgiz, 1960, 400 p.

11. Rozanov B.G., Geneticheskaya morfologiya pochv (Genetic soil morphology), Moscow: Izdatel'stvo Moskovskogo universiteta, 1975, 291 p.

12. Savvinov N.I., Struktura pochvy i yeye prochnost' na tseline, pereloge i staropakhotnykh uchastkakh (Soil structure and its strength on virgin soil, fallow and old-cultivated areas), Moscow: Selkolkhozgiz, 1931, 46 p.

13. Shein E.V., Kurs fiziki pochv (Soil physics course), Moscow, Izdatel'stvo Moskovskogo universiteta, 2005, 432 p.

14. Shein E.V., Karpachevskii L.O., Teorii i metody fiziki pochv (Theories and methods of soil physics), Moscow: Grif and K, 2007, 616 p.

15. Shein E.V. et al. Rabochaya tetrad’. Praktikumpo fizike tverdoy fazypochv (Workbook. Workshop on the physics of the solid phase of soils), Moscow: Buki-Vedi, 2017, 119 p.

16. Alvaro-Fuentes J., Arrue J.L., Gracia R., Lopez M.V., Soil management effects on aggregate dynamics in semiarid Aragon (NE Spain), Science of the total environment, 2007, No. 387, pp. 179-182, DOI: 10.1016/j.scitotenv.2007.01.046.

17. Alvaro-Fuentes J., Arrue J.L., Cantero-Martmez C., Lopez M.V., Aggregate breakdown during tillage in a Mediterranean loamy soil, Soil and Tillage Research, 2008, No. 101, pp. 62-68, DOI: 10.1016/i.still.2008.06.004.

18. Alvaro-Fuentes J., Arrue J.L., Gracia R., Lopez M. V. Tillage and cropping intensification effects on soil aggregation: Temporal dynamics and controlling factors under semiarid conditions, Geoderma, 2008, No. 145, pp. 390-396, DOI: 10.1016/i.geoderma.2008.04.005.

19. Busscher W., Krueger E., Novak J., Kurtener D., Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses, International Agrophysics, 2007, No. 21, pp. 225-231.

20. Busscher W.J., Novak J.M., Caesar-Ton That T.C., Organic matter and polyacrylamide amendment of Norfolk loamy sand, Soil and Tillage Research, 2007, No. 93, pp. 171-178, DOI: 10.1016/i.still.2006.03.023.

21. Gartzia-Bengoetxea N., Gonzalez-Arias A., Merino A., de Arano I.M., Soil organic matter in soil physical fractions in adiacent semi-natural and cultivated stands in temperate Atlantic forests, Soil Biology and Biochemistry, 2009, No. 41, pp. 1674-1683, DOI: 10.1016/i.soilbio.2009.05.010.

22. Gartzia-Bengoetxea N., Arbestain M.C., Mandiola E., De Arano, I.M., Physical protection of soil organic matter following mechanized forest operations in Pinus radiata D.Don plantations, Soil Biology and Biochemistry, 2011, No. 43, pp. 141-149, DOI: 10.1016/i.soilbio.2010.09.025.

23. Gunina A., Kuzyakov Y., Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance, Soil Biology and Biochemistry, 2014, No. 71, pp. 95-104, DOI: 10.1016/i.soilbio.2014.01.011.

24. Gunina A., Ryzhova I., Dorodnikov M., Kuzyakov Y., Effect of plant communities on aggregate composition and organic matter stabilization in young soils, Plant and Soil, 2015, No. 387, pp. 265-275, DOI: 10.1007/s11104-014-2299-y.

25. Guzman G., Barron V., Gomez J.A., Evaluation of magnetic iron oxides as sediment tracers in water erosion experiments, Catena, 2010, No. 82, pp. 126133, DOI: 10.1016/i.catena.2010.05.011.

26. Jin X., An T., Gall A., Li S., Sun L., Pei J., Gao X., He X., Fu S., Ding X., Wang J., Long-term plastic film mulching and fertilization treatments changed the annual distribution of residual maize straw C in soil aggregates under field conditions: characterization by 13C tracing, Journal of Soils and Sediments, 2018, No. 18, pp. 169-178, DOI: 10.1007/s11368-017-1754-9.

27. Jongmans A., Feijtel T., Miedema R., van Breemen N., Veldkamp A., Soil formation in a Quaternary terrace sequence of the Allier, Limagne, France. Macro- and micromorphology, particle size distribution, chemistry, Geoderma, 1991, No. 49, pp. 215-239, DOI: 10.1016/0016-7061(91)90077-7.

28. Kristiansen S., Schjonning P., Thomsen I., Olesen J., Kristensen K., Christensen B., Similarity of differently sized macro-aggregates in arable soils of different texture, Geoderma, 2006, No. 137, pp. 147-154, DOI: 10.1016/i.geoderma.2006.08.005.

29. Labiadh M., Gilles Bergametti G., Attoui B., Sekrafi S., Particle size distributions of South Tunisian soils erodible by wind, Geodinamica Acta, 2011, No. 24, pp. 37-47, DOI: 10.3166/ga.24.37-47.

30. Lopez M., de Dios Herrero J., Hevia G., Gracia R., Buschiazzo D., Determination of the wind-erodible fraction of soils using different methodologies, Geoderma, 2007, No. 139, pp. 407-411, DOI: 10.1016/i.geoderma.2007.03.006.

31. Mbagwu J.S.C., Piccolo A., Carbon, nitrogen and phosphorus concentrations in aggregates of organic waste-amended soils, Biological Wastes, 1990, No. 31, pp. 97-111, DOI: 10.1016/0269-7483(90)90164-N.

32. Moreno-de las H.M., Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment, Geoderma, 2009, No. 149, pp. 249-256, DOI: 10.1016/i.geoderma.2008.12.003.

33. Perfect E., Blevins R.L., Fractal characterization of soil aggregation and fragmentation as influenced by tillage treatment, Soil Science Society of America Journal, 1997, No. 61, pp. 896-900, DOI: 10.2136/sssai1997.03615995006100030026x.

34. Perfect E., Zhai Q., Blevins R.L., Soil and tillage effects on the characteristic size and shape of aggregates, Soil Science Society of America Journal, 1997, No. 61, pp. 1459-1465, DOI: 10.2136/sssai1997.03615995006100050025x.

35. Perfect E., Zhai Q., Blevins R.L., Estimation of Weibull brittle fracture parameters for heterogeneous materials, Soil Science Society of America Journal, 1998, No. 62, pp. 1212-1219, DOI: 10.2136/sssai1998.03615995006200050009x.

36. Preston S., Griffiths B.S., Young I.M., An investigation into sources of soil crack heterogeneity using fractal geometry, European Journal of Soil Science, 1997, No. 48, pp. 31-37, DOI; 10.1111/i.1365-2389.1997.tb00182.x.

37. Retsch GmbH, Instructions for the sieve shaker use AS 200, Haan, 1998, 37 p.

38. Sainju U.M., Carbon and nitrogen pools in soil aggregates separates by dry and wet sieving methods, Soil Science, 2006, No. 171, pp. 937-949, DOI: 10.1097/01.ss0000228062.30958.5a.

39. Sarker J., Singh B., Cowie A., Fang Y., Collins D., Dougherty W., Singh B., Carbon and nutrient mineralization dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues, Soil Biology and Biochemistry, 2018, No. 116, pp. 22-38, DOI: 10.1016/i.soilbio.2017.09.030.

40. Skvortsova E.B., Changes in the geometric structure of pores and aggregates as indicators of the structural degradation of cultivated soils, Eurasian Soil Science, 2009, No. 11, Vol. 42, pp. 1254-1262, DOI: 10.1134/S1064229309110088.

41. Wang R., Dungait J., Buss H., Yang S., Zhang Y., Xu Z., Jiang Y., Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland, Science of the total environment, 2017, No. 575, pp. 564-572, DOI: 10.1016/i.scitotenv.2016.09.018.

42. Wang X., Cammeraat E., Cerli C., Kalbitz K., Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition, Soil Biology and Biochemistry, 2014, No. 72, pp. 55-65, DOI: 10.1016/i.soilbio.2014.01.018.

43. Wang Y., Hu N., Ge T., Kuzyakov Y., Wang Z., Li Z., Tang Z., Chen Y., Wu C., Lou Y., Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment, Applied Soil Ecology, 2017, No. 111, pp. 65-72, DOI: 10.1016/i.apsoil.2016.11.015.

44. Wei K., Chen Z., Zhang X., Liang W., Chen L., Tillage effects on phosphorus composition and phosphatase activities in soil aggregates, Geoderma, 2014, No. 217-218, pp. 37-44. DOI: 10.1016/i.geoderma.2013.11.002.

45. Weng Z., Van Zwieten L., Singh B., Tavakkoli E., Kimber S., Morris S., Macdonald L., Cowie A., The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol, Soil Biology and Biochemistry, 2018, No. 118, pp. 91-96, DOI: 10.1016/i.soilbio.2017.12.008.

46. Yang H., Wang J., .Zhang F., Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area, Environmental Science and Pollution Research, 2016, No. 23, pp. 2392023929, DOI: 10.1007/s11356-016-7583-3.

47. Zhang S., Li Q., Lu Y., Zhang X., Liang W., Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China, Soil and Tillage Research, 2012, No. 124, pp. 196-202, DOI: 10.1016/i.still.2012.06.007.

48. Zhang S., Li Q., Zhang X., Wei K., Chen L., Liang W., Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems, Soil Biology and Biochemistry, 2013, No. 62, pp. 147-156. DOI: 10.1016/i.soilbio.2013.03.023.

49. Zhang Z., Zhang X., Mahamood M., Zhang S., Huang S., Liang W., Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates, Scientific reports, 2016, No. 6, pp. 1-12, DOI: 10.1038/srep31118.

50. Zubkova T.A., The nature of mechanical strength of oven-dry aggregates of soil, Eurasian Soil Science, 1998, Vol. 3, No. 31, pp. 254-262.


Review

For citations:


Fomin D.S., Valdes-Korovkin I.A., Holub A.P., Yudina A.V. Dry sieving analysis of soil by vibratory sieve shaker: modification and optimization. Dokuchaev Soil Bulletin. 2019;(96):149-177. (In Russ.) https://doi.org/10.19047/0136-1694-2019-96-149-177

Views: 1398


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)