Preview

Dokuchaev Soil Bulletin

Advanced search

Digital mapping of soil cover eroded patterns on the basis of soil erosion simulation model (northern forest-steppe of the Central Russian Upland)

https://doi.org/10.19047/0136-1694-2019-100-5-35

Abstract

The paper presents original developments on the application of WaTEM/SEDEM erosion model for large-scale mapping of erosion patterns of the soil cover in the Central Russian Upland. The share of eroded soils in the composition of soil combinations on plowed slopes was evaluated; such estimation was carried out on the basis of a statistical comparison of the calculated rates of soil losses with the results of actual soil-morphological diagnostics of the degree of chernozems erosion. The obtained relations between share of eroded soils in soil cover patterns and modelled erosion rates were used for development of the map depicting typified combinations of soils with various degrees of erosion. Comparison with detailed soil survey materials showed that the map is accurate enough for the spatial diversity and configuration of eroded soils combinations description. At the given input parameters of the erosion model qualitative changes in the soil cover structure (share of slightly-eroded soils is more than 10%) start from the threshold value of water erosion of 8 t·ha-1·year-1. With an average annual erosion of 30 t·ha-1·year-1, the share of denuded soils exceeds 50%. The developed approach seems to be promising for solving fundamental and applied problems related to the study of structural and functional organization of the soil cover of slopes and for planning the erosion control measures in adaptive-landscape agriculture.

About the Authors

D. N. Kozlov
V.V. Dokuchaev Soil Science Institute
Russian Federation

Daniil Nikolaevich Kozlov

7 Bld. 2 Pyzhevskiy per., Moscow 2119017




A. P. Zhidkin
V.V. Dokuchaev Soil Science Institute
Russian Federation

Andrey Petrovich Zhidkin

7 Bld. 2 Pyzhevskiy per., Moscow 2119017




Nikolay Igorevich Lozbenev
V.V. Dokuchaev Soil Science Institute
Russian Federation

Nikolay Igorevich Lozbenev  

7 Bld. 2 Pyzhevskiy per., Moscow 2119017



References

1. Barabanov A.T., Dolgov S.V., Koronkevich N.I., Panov V.I., Petel'ko A.I., Poverkhnostnyy stok i infil'tratsiya v pochvu talykh vod na pashne v lesostepnoy i stepnoy zonakh Vostochno-evropeyskoy ravniny (Surface runoff and melt water infiltration on arable land in the forest-steppe and steppe zones of the East European Plain), Pochvovedenie, 2018, No. 1, pp. 62–69

2. Golosov V.N., Gennadiev A.N., Olson K.R., Markelov M.V., Zhidkin A.P., Chendev Yu.G., Kovach R.G., Prostranstvenno-vremennye osobennosti razvitiya pochvenno-erozionnykh protsessov v lesostepnoy zone Vostochno-Evropeyskoy ravniny (Spatial-temporal features of the development of soil-erosion processes in the forest-steppe zone of the East European Plain), Pochvovedenie, 2011, No. 7, pp. 861–869.

3. Golosov V.N., Belyaev V.R., Markelov M.V., Shamshurina E.N., Osobennosti pereraspredeleniya nanosov na malom vodosbore za razlichnye periody ego zemledel'cheskogo osvoeniya (vodosbor Gracheva loshchina, Kurskaya oblast') (Peculiarities of sediment redistribution at a small catchment for different periods of its agricultural development (catchment Gracheva hollow, Kursk region)), Geomorfologiya, 2012, No. 1, pp. 25–35.

4. Zhidkin A.P., Golosov V.N., Svetlichnyy A.A., Pyatkova A.V., Kolichestvennaya otsenka pereraspredeleniya nanosov na pakhotnykh sklonakh na osnove ispol'zovaniya polevykh metodov i matematicheskikh modeley (Quantitative assessment of sediment redistribution on arable slopes based on the use of field methods and mathematical models), Geomorfologiya, 2015, No. 2, pp. 41–53.

5. Kozlov D.N., Lozbenev N.I., Levchenko E.A., Strukturno-funktsional'naya organizatsiya vodno-migratsionnykh i erozionno-akkumulyativnykh kompleksov lesostepi Srednerusskoy vozvyshennosti, Landshaftovedenie: teoriya, metody, landshaftno-ekologicheskoe obespechenie prirodopol'zovaniya i ustoychivogo razvitiya: materialy XII Mezhdunarodnoy landshaftnoy konferentsii (Landscape Science: Theory, Methods, Landscape-Environmental Support for Nature Management and Sustainable Development: Proc. XII Int. Landscape Conf.), Tyumen': Izd-vo Tyumenskogo gos. un-ta, 2017, pp. 71–76.

6. Kiryushin V.I. Teoriya adaptivno-landshaftnogo zemledeliya i proektirovaniya agrolandshaftov (The theory of adaptive landscape farming and the design of agrolandscapes), Moscow: KoloS, 2011, 443 p.

7. Kleshchenko M.M., Formirovanie erozionnykh pochvennykh kombinatsiy v arealakh dernovo-podzolistykh i chernozemnykh pochv (sravnenie eksperimental'nykh i model'nykh dannykh) (Formation of erosion soil combinations in the areas of sod-podzolic and chernozem soils (comparison of experimental and model data)), Materialy Mezhdunarodnoy nauchnoy konferentsii XVIII Dokuchaevskie molodezhnye chteniya “Degradatsiya pochv i prodovol'stvennaya bezopasnost' Rossii” (Proc. Int. Sci. Conf. – XVIII Dokuchaev youth readings “Soil degradation and food security of Russia”), St. Petersburg: Izdatel'skiy dom SPbGU, 2015, pp. 157–158.

8. Kleshchenko M.M., Kozlov D.N., Sorokina N.P., Zakonomernosti formirovaniya erozionnykh pochvennykh kombinatsiy lesostepi Srednerusskoy vozvyshennosti i ikh kartografirovanie s ispol'zovaniem pochvenno-morfologicheskogo i raschetnogo metodov (Patterns of formation of erosive soil combinations of the forest-steppe of the Central Russian Upland and their mapping using soil-morphological and calculation methods), In: Pochvovedenie – prodovol'stvennoy i ekologicheskoy bezopasnosti strany: tezisy dokladov VII s’ezda Obshchestva pochvovedov im. V.V. Dokuchaeva i Vserossiyskoy s mezhdunarodnym uchastiem nauchnoy konferentsii (Soil Science – Food and Environmental Safety of the Country: Proc. VII Congress of the Society of Soil Scientists named after V.V. Dokuchaev and the All-Russian Sci. Conf. with international participation), Part. II, Moscow – Belgorod: Izdatel'skiy dom “Belgorod”, 2016, pp. 422–423.

9. Kuznetsov M.S., Gendugov V.M., Dubin V.N., Dopustimye poteri pochvy pri erozii i skorost' gumusoobrazovaniya (Permissible soil loss during erosion and the rate of humus formation), Dokuchaev Soil Bulletin, 2002, Vol. 56, pp. 50–58.

10. Larionov G.A., Eroziya i deflyatsiya pochv: osnovnye zakonomernosti i kolichestvennye otsenki (Soil erosion and deflation: basic patterns and quantitative estimates.), Moscow: Izd-vo Mosk. un-ta, 1993, 200 p.

11. Litvin L.F., Geografiya erozii pochv sel'skokhozyaystvennykh zemel' Rossii (Geography of soil erosion on agricultural land in Russia), Moscow: IKTs “Akademkniga”, 2002, 255 p.

12. Metodicheskoe posobie i normativnye materialy dlya razrabotki adaptivno-landshaftnykh sistem zemledeliya (Methodological manual and standards for developing adaptive landscape farming systems), Kursk: ChuDo, 2001, 260 p.

13. Vanin D.E., Surmach G.P. (Eds), Metodicheskie rekomendatsii po proektirovaniyu kompleksa protivoerozionnykh meropriyatiy na raschetnoy osnove (Guidelines for the design of a set of erosion control measures on a calculated basis), Kursk, 1985, 167 p.

14. Kartsev G.A., Luka A.N., Nosov S.I. (Eds), Metodicheskie ukazaniya po proektirovaniyu protivoerozionnoy organizatsii territorii pri vnutrikhozyaystvennom zemleustroystve v zonakh proyavleniya erozii (Methodical guidelines for the design of erosion control organization of the territory in intra-farm land management in zones of erosion manifestation), Moscow, 1989, 79 p.

15. Mirtskhulava Ts.E., Vodnaya eroziya pochv (mekhanizm, prognoz) (Water erosion of soils (mechanism, prognosing)), Tbilisi: “Metsniereba”, 2000, pp. 3–421.

16. Nauchnye osnovy predotvrashcheniya degradatsii pochv (zemel') sel'skokhozyaystvennykh ugodiy Rossii i formirovaniya sistem vosproizvodstva ikh plodorodiya v adaptivno-landshaftnom zemledelii: T. 1. Teoreticheskie i metodicheskie osnovy predotvrashcheniya degradatsii pochv (zemel') sel'skokhozyaystvennykh ugodiy (Scientific basis for the prevention of the soil (land) degradation in agricultural lands of Russia and the formation of the reproduction systems of their fertility in adaptive and landscape farming: Vol. 1. Theoretical and methodological basis for the prevention of the soil (land) degradation in agricultural lands), Moscow: V.V. Dokuchaev Soil Science Institute RAS, 2013, 756 p.

17. Obshchesoyuznaya instruktsiya po pochvennym obsledovaniyam i sostavleniyu krupnomasshtabnykh pochvennykh kart zemlepol'zovaniy (All-Union instruction on soil surveys and development of large-scale land use soil maps), Mosscow: Kolos, 1973, 48 p.

18. Nosin V.A. (Ed.), Soil map of the Kursk State Agricultural Experimental Station М 1 : 10 000, Мoscow: V.V. Dokuchaev Soil Science Institute, 1965.

19. Rozhkov V.A., Otsenka erozionnoy opasnosti pochv (Erosion hazard assessment of soils), Dokuchaev Soil Bulletin, 2007, Vol. 59, pp. 77–91, DOI: 10.19047/0136-1694-2007-59-77-91.

20. Svetlichnyy A.A., Chernyy S.G., Shvebs G.I., Eroziovedenie: teoreticheskie i prikladnye aspekty (Erosion studies: theoretical and applied aspects), Sumy: ITD “Universitetskaya kniga”, 2004, 410 p.

21. Smirnova L.G., Narozhnyaya A.G., Shamardanova E.Yu., Sravnenie dvukh metodov rascheta smyva pochvy na vodosborakh s primeneniem GIS-tekhnologiy (Comparison of two methods for calculating soil losses on watersheds using GIS technologies), Dostizheniya nauki i tekhniki APK, 2012, No. 9, pp. 10–12.

22. Sorokina N.P., Statisticheskiy metod otsenki smytosti na primere moshchnykh tipichnykh chernozemov Kurskoy opytnoy stantsii (A statistical method for assessing erosin degradation by the example of deepl typical chernozems of the Kursk experimental station), Pochvovedenie, 1966, No. 2, pp. 91–96.

23. Sorokina N.P., Elementarnye pochvennye struktury na polyakh Kurskoy opytnoy stantsii (Elementary soil structures in the fields of the Kursk experimental station.), In: Krupnomasshtabnaya kartografiya pochv i ee znachenie v sel'skom khozyaystve chernozemnoy zony. Nauch. tr. Pochv. in-ta im. V.V. Dokuchaeva (Large-scale cartography of soils and its significance in the agriculture of the chernozem zone. Scientific Works of V.V. Dokuchaev Soil Science Institute), Moscow, 1976, pp. 155–173.

24. Sorokina N.P., Dinamika PP raspakhannogo sklona Kurskoy opytnoy stantsii za 20-letniy period (The dynamics of the plowed slope of the Kursk experimental station over a 20-year period), In: Regional'nye modeli plodorodiya pochv kak osnova sovershenstvovaniya zonal'nykh sistem zemledeliya (Regional soil fertility models as the basis for improving zonal farming systems), Moscow, 1988, pp. 163–171.

25. Sorokina N.P., Printsipy tipizatsii pochvennykh kombinatsiy pri izuchenii agrogennykh izmeneniy pochvennogo pokrova (The principles of typification of soil combinations in the study of agrogenic changes in soil cover), Pochvovedenie, 2005, No. 12, pp. 1477–1488.

26. Surmach G.P., Rel'efoobrazovanie, formirovanie lesostepi, sovremennaya eroziya i protivoerozionnye meropriyatiya (Relief formation, forest-steppe formation, modern erosion and erosion control measures), Volgograd, 1992, 172 p.

27. Sukhanovskiy Yu.P., Model' dozhdevoy erozii pochv (Model of soil rain erosion), Pochvovedenie, 2010, No. 9, pp. 1114–1125.

28. Sukhanovskiy Yu.P., Veroyatnostnyy podkhod k raschetu erozionnykh poter' pochvy (A probabilistic approach to the calculation of soil erosion losses), Pochvovedenie, 2013, No. 4, pp. 474–481.

29. Tishkina E.V., Ivanova N.N., Pochvennyy pokrov raspakhannykh i tselinnykh pribalochnykh sklonov (Kurskaya oblast') (Soil cover of the plowed and virgin snowboard slopes (Kursk region)), Vestn. Mosk. un-ta, Ser. 5, Geografiya, 2010, No. 6, pp. 73–79.

30. Fishman M.I., Zapasy gumusa v mikrokombinatsiyakh pochvennogo pokrova lesostepi Srednerusskoy vozvyshennosti (Humus reserves in microcombinations of the soil cover of the forest-steppe of the Central Russian Upland), Pochvovedenie, 1971, No. 11, pp. 20–30.

31. Fishman M.I., Chernozemnye kompleksy i ikh svyaz' s rel'efom na Srednerusskoy vozvyshennosti (Black soil complexes and their relationship with the relief on the Central Russian Upland), Pochvovedenie, 1977, No. 5, pp. 17–30.

32. Fridland V.M., Glazovskaya M.A., Osnovnye formy struktur pochvennogo pokrova Zemli (The main forms of soil cover of the Earth), Priroda, 1979, No. 11, pp. 61–69.

33. Tselishcheva L.K., Dayneko E.K., Ocherk pochv Streletskogo uchastka Tsentral'no-chernozemnogo zapovednika (Soil sketch of the Streletsky section of the Central Black Earth Reserve), In: Trudy Tsentral'no-chernozemnogo gosudarstvennogo zapovednika imeni V.V. Alekhina (Works of the Central Black Earth State Reserve named after V.V. Alekhine.), 1966, Iss. 10.

34. Beff L., Gunther T. Vandoorne B., Couvreur V., Javaux M., Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography, Hydrol. Earth Syst. Sci., 2013, Vol. 17, Iss. 2, pp. 595–609. DOI: 10.5194/hess-17-595-2013.

35. De Vente J., Poesen J., Verstraeten G., Govers G., Vanmaercke M., Van Rompaey A., Arabkhedri M., Boix-Fayos C., Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 2013, Vol. 127, pp. 16–29.

36. Dhami B.S., Pandey A., Comparative review of recently developed hydrologic models, J. IndianWater Resour. Soc., 2013, Vol. 33, No. 3, pp. 34–41.

37. Eltner A., Baumgart P., Maas H.-G., Faust D., Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil, Earth Surface Processes and Landforms, 2014, Vol. 40, Iss. 6, pp. 741–755, DOI: 10.1002/esp.3673.

38. Florinsky I.V., Digital terrain analysis in soil science and geology, Amsterdam: Elsevier, Academic Press, 2016, 506 p.

39. García-Ruiz J.M., Beguería S., Nadal-Romero E., González-Hidalgo J.C., Lana-Renault N., Sanjuán Y., A meta-analysis of soil erosion rates across the world, Geomorphology, 2015, Vol. 239, pp. 160–173.

40. Golden H.E., Lane C.R., Amatya D.M., Bandilla K.W., Hadas R.K., Knightes C.D., Ssegane H., Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods, Environmental Modelling & Software, 2014, Vol. 53, pp. 190–206.

41. Karydas C.G., Panagos P., Gitas I.Z., A classification of water erosion models according to their geospatial characteristics, Digital Earth, 2014, Vol. 7, Iss. 3, pp. 229–250, DOI: 10.1080/17538947.2012.671380.

42. Kozlov D.N., Levchenko E.A., Lozbenev N.I., Soil combinations as an object of DSM: a case study in chernozems area of the Russian Plain. In: Arrouays D., Savin I., Leenaars J., McBratney A. (Eds.), GlobalSoilMap – Digital Soil Mapping from Country to Globe, London: CRC Press, 2018, pp. 81–88.

43. Minasny B., McBratney A., Digital soil mapping: A brief history and some lessons, Geoderma, 2016, Vol. 264, Part B, pp. 301–311.

44. Panagos P., Borrelli P., Poesen J. et al., The new assessment of soil loss by water erosion in Europe, Environmental Science & Policy, 2015, Vol. 54, pp. 438–447, DOI: 10.1016/j.envsci.2015.08.012.

45. Panagos P., Borrelli P., Meusburger K. et al., Global rainfall erosivity assessment based on high-temporal resolution rainfall records, Sci Rep., 2017, 7 (1):4175, DOI: 10.1038/s41598-017-04282-8.

46. Pandey A., Himanshu S.K., Mishra S.K., Singh V.P., Physically based soil erosion and sediment yield models revisited, Catena, 2016, Vol. 147, pp. 595–620.

47. Renard K., Foster G., Weesies G., McCool D., Yoder D., Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), USDA Agriculture Handbook, 1997, 384 p. URL: https://www.ars.usda.gov/ARSUserFiles/64080530/rusle/ah_703.pdf.

48. Revised Universal Soil Loss Equation Version 2 (RUSLE2). User’s reference guide, USDA-Agricultural Research Service, 2008, 430 p., URL: http://fargo.nserl.purdue.edu/rusle2_dataweb/userguide/RUSLE2_User_Ref_Guide_2008.pdf.

49. Van Oost K., Govers G., Desmet P., Evaluating the effects of changes in landscape structure on soil erosion by water and tillage, Landscape Ecology, 2000, Vol. 15, Iss. 6, pp. 577–589, DOI: 10.1023/A:1008198215674.

50. Van Rompay A., Verstraeten G., Van Oost K., Govers G., Poesen J., Modelling mean annual sediment yield using a distributed approach, Earth Surface Processes and Landforms, 2001, Vol. 26, Iss. 11, pp. 1221–1236.

51. Verstraeten G, Van Oost K, Van Rompaey A, Poesen J., Govers G., Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling, Soil Use and Management, 2002, Vol. 18, pp. 386–394.


Review

For citations:


Kozlov D.N., Zhidkin A.P., Lozbenev N.I. Digital mapping of soil cover eroded patterns on the basis of soil erosion simulation model (northern forest-steppe of the Central Russian Upland). Dokuchaev Soil Bulletin. 2019;(100):5-35. (In Russ.) https://doi.org/10.19047/0136-1694-2019-100-5-35

Views: 1203


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)