THE METHOD OF PREPARING SOIL SAMPLES FOR SOIL – WATER CONTACT ANGLE MEASUREMENT USING SESSILE-DROP TECHNIQUE
https://doi.org/10.19047/0136-1694-2019-97-91-112
Abstract
About the Authors
N. V. MatveevaRussian Federation
119017, Moscow, Pizhevskiy per., 7, build. 2; 119991, Moscow, Leninskie Gory, 1.
E. Yu. Milanovsky
Russian Federation
119017, Moscow, Pizhevskiy per., 7, build. 2; 119991, Moscow, Leninskie Gory, 1.
O. B. Rogova
Russian Federation
119017, Moscow, Pizhevskiy per., 7, build. 2.
References
1. Grzhibovskii A.M., Analiz kolichestvennykh dannykh dlya dvukh nezavisimykh grupp (Analysis of quantitative data for two independent groups), Ekologiya cheloveka, 2008, No. 2, pp. 54–60.
2. Milanovskii E.Yu., Shein E.V., Rusanov A.M., Zasypkina D.I., Nikolaeva E.I., Anilova L.V., Pochvennaya struktura i organicheskoe veshchestvo tipichnykh chernozemov Predural'ya pod lesom i mnogoletnei pashnei (Soil structure and organic matter of typical chernozem of the Pre-Urals under forest and perennial arable land), Vestnik Orenburgskogo gosudarstvennogo universiteta, 2005, No. 2, pp. 113–117.
3. Svidetel'stvo na standartnyi obrazets (CO) SP-1 (kurskii chernozem) № 901-90 (OOKO152) po gosudarstvennomu reestru mer i izmeritel'nykh priborov SSSR (razdel standartnye obraztsy). Certificate for a standard sample (CO) SP-1 (Kursk black soil) No. 901-90 (ООКО152) according to the state register of measures and measuring devices of the USSR (section standard samples).1990.
4. Shein Ye.V., Milanovskiy Ye.Yu., Khaydapova D.D., Dembovetskiy A.V., Tyugay Z.N., Novye pribory dlya izucheniya fizicheskikh svoistv pochv: 3Dtomografiya, reologicheskie parametry, kontaktnyi ugol (New instruments for studying soil physical properties: 3D tomography, rheological properties, contact angle), Vestnik AGAU, 2014, No. 5 (115), pp. 44–48.
5. Kholodov V.A., Yaroslavtseva N.V., Yashin M.A., Frid A.S., Lazarev V.I., Tyugai Z.N., Milanovskii E.Yu., Kontaktnye ugly smachivaniya i vodoustoichivost' pochvennoi struktury (Contact angles of wetting and water resistance of the soil structure), Pochvovedenie, 2015, No. 6, pp. 693–693, DOI: 10.7868/S0032180X15060064.
6. Adamson A., Physical chemistry of surfaces 5 th edn, New York: NY John Wiley & Sons Inc, 1990, 757 p.
7. Bachmann J., Contact angle and surface charge of wettable and hydrophobic silt particles, J. Soil Sci. Plant Nutr., 2001, No. 1, pp. 26–33.
8. Bachmann J., Ellies A., Hartge K.H., Development and application of a new sessile drop contact angle method to assess soil water repellency, Journal of Hydrology, 2000a, No. 231, pp. 66–75.
9. Bachmann J., Goebel M.O., Woche S.K., Small-scale contact angle mapping on undisturbed soil surfaces, Journal of Hydrology and Hydromechanics, 2013, No. 61 (1), pp. 3–8.
10. Bachmann J., McHale G. Superhydrophobic surfaces: a model approach to predict contact angle and surface energy of soil particles, European Journal of Soil Science, 2009, No. 60 (3), pp. 420–430.
11. Bachmann J., Horton R., Van Der Ploeg R.R., Woche S., Modified sessile drop method for assessing initial soil-water contact angle of sandy soil, Soil Science Society of America Journal, 2000b, No. 64 (2), pp. 564–567, DOI: 10.2136/sssaj2000.642564x.
12. Bachmann J., Woche S.K., Goebel M.O., Kirkham M.B., Horton R., Extended methodology for determining wetting properties of porous media, Water Resources Research, 2003, Vol. 39, No. 12, 14 p., DOI: 10.1029/2003WR002143.
13. Bahrani B., Mansell R.S., Hammond L.C., Using infiltrations of heptane and water into soil columns to determine soil-water contact angles, Soil Science Society of America Journal, 1973, No. 37 (4), pp. 532–534, DOI: 10.2136/sssaj1973.03615995003700040020x.
14. Beatty S.M., Smith J.E., Fractional wettability and contact angle dynamics in burned water repellent soils, Journal of Hydrology, 2010, Vol. 391, No. 1–2, pp. 99–110, DOI: 10.1016/j.jhydrol.2010.07.007.
15. Burghardt W., Determination of the wetting characteristics of peat soil extracts by contact-angle measurements, Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 1985, Vol. 148, No. 1, pp. 66–72, DOI: 10.1002/jpln.19851480108.
16. Dekker L.W., Ritsema C.J., Oostindie K., Boersma O.H., Effect of drying temperature on the severity of soil water repellency, Soil Science, 1998, No. 163 (10), pp. 780–796, DOI: 10.1097/00010694-199810000-00002.
17. Doerr S.H., On standardizing the 'water drop penetration time' and the 'molarity of an ethanol droplet' techniques to classify soil hydrophobicity: A case study using medium textured soils, Earth Surface Processes and Landforms, 1998, Vol. 23, No. 7, pp. 663–668.
18. Doerr S.H., Shakesby R.A., Walsh R.P.D., Soil water repellency: its causes, characteristics and hydro-geomorphological significance, EarthScience Reviews, 2000, Vol. 51, Issue 1, pp. 33–65, DOI: 10.1016/S0012-8252(00)00011-8.
19. Ellerbrock R.H., Gerke H.H., Bachmann J., Goebel M.O., Composition of organic matter fractions for explaining wettability of three forest soils, Soil Science Society of America Journal, 2005, Vol. 69, Issue 1, pp. 57–66.
20. Goebel M.O., Bachmann J., Woche S.K., Fischer W.R., Horton R., Water potential and aggregate size effects on contact angle and surface energy, Soil Science Society of America Journal, 2004, Vol. 68, Issue 2, pp. 383–393.
21. Kholodov V.A., Yaroslavtseva N.V., Yashin M.A., Frid A.S., Lazarev V.I., Tyugai Z.N., Milanovskiy E.Y., Contact angles of wetting and water stability of soil structure, Eurasian Soil Science, 2015, Vol. 48, Issue 6, pp. 600–607, DOI: 10.1134/S106422931506006X.
22. Kruskal W.H., Wallis W.A., Use of ranks in one-criterion variance analysis, Journal of the American statistical Association, 1952, Vol. 47, Issue 260, pp. 583–621.
23. Lamparter A., Bachmann J., Woche S.K., Determination of small-scale spatial heterogeneity of water repellency in sandy soils, Soil Science Society of America Journal, 2010, Vol. 74,Issue 6, pp. 2010–2012.
24. Leelamanie D.A.L., Karube J., Yoshida A., Clay effects on the contact angle and water drop penetration time of model soils, Soil Science and Plant Nutrition, 2010, Vol. 56, Issue 3, pp. 371–375, DOI: 10.1111/j.1747-0765.2010.00471.x.
25. Lilliefors H.W., On the Kolmogorov-Smirnov test for normality with mean and variance unknown, Journal of the American statistical Association, 1967, Vol. 62, Issue 318, pp. 399–402.
26. Liu Z., X. Yu, Wan L., Capillary rise method for the measurement of the contact angle of soils, Acta Geotechnica, 2016, Vol. 11, Issue 1, pp. 21–35, DOI: 10.1007/s11440-014-0352-x.
27. Moradi A.B., Carminati A., Lamparter A., Woche S.K., Bachmann J., Vetterlein D., Vogel H.J., Oswald S.E., Is the rhizosphere temporarily water repellent? Vadose Zone Journal, 2012, Vol. 11 (3), 8 p.
28. Papierowska E., Matysiak W., Szatylowicz J., Debaene G., Urbanek E., Kalisz B., Lachacz A., Compatibility of methods used for soil water repellency determination for organic and organo-mineral soils, Geoderma, 2018, Vol. 314, pp. 221–231.
29. Ryley D.J., Khoshaim B.H., New method of determining contact-angle made by a sessile drop upon a horizontal surface (sessile drop contact-angle), Journal of Colloid and Interface Science, 1977, V ol. 59, Issue 2, pp. 243–251.
30. Shang J., Flury M., Harsh J.B., Zollars R.L., Comparison of different methods to measure contact angles of soil colloids, Journal of Colloid and Interface Science, 2008, Vol. 328, Issue 2, pp. 299–307, DOI: 10.1016/j.jcis.2008.09.039.
31. Sofinskaya O.A., Kosterin A.V., Kosterina E.A., Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals, Eurasian Soil Science, 2016, Vol. 49, Issue 12, pp. 1375–1381, DOI: 10.1134/S1064229316120115.
32. Wu W.J., Baseline studies of the clay minerals society source clays: colloid and surface phenomena, Clays and Clay Minerals, 2001, Vol. 49, No. 5, pp. 446–452.
Review
For citations:
Matveeva N.V., Milanovsky E.Yu., Rogova O.B. THE METHOD OF PREPARING SOIL SAMPLES FOR SOIL – WATER CONTACT ANGLE MEASUREMENT USING SESSILE-DROP TECHNIQUE. Dokuchaev Soil Bulletin. 2019;(97):91-112. https://doi.org/10.19047/0136-1694-2019-97-91-112