Preview

Dokuchaev Soil Bulletin

Advanced search

Study of the tree species effect on the soil by means of discriminant analysis

https://doi.org/10.19047/0136-1694-2019-96-22-46

Abstract

A multi-sided study of the interactions between forest and soil requires choosing sample plots in such a way when their soil characteristics are as similar as possible but the types of biocoenoses are different. This study employed materials from the database “Soils of Karelia”, which has pooled together long-term data on soils of the Republic of Karelia. The aim of the analysis was to identify the soil traits that are the most sensitive to the type of biocoenosis. The biocoenoses chosen for the analysis were automorphic pine, spruce and birch communities, collectively accounting for 99 % of forest stands in Karelia, growing on podzolic-type Al-Fe-humus soils with sandy texture over sandy or loamy-sand till, which represent the most widespread type of soils in the study area. The analysis was performed for the following soil horizons: forest floor (O), eluvial (E) and illuvial (B). In order to characterize the soil horizons the physico-chemical parameters were used: рН (KCl), total С and N content, labile P205 and K20 compounds content, and gross content of SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5. Discriminant analysis was employed to determine the traits contributing the most to the differentiation of biocoenosis types. The contribution of the traits to differentiation between groups was measured by Wilks’ lambda. Overall, the analysis has shown that N and C content the most significantly reflect the changes happening under the effect of the forest, both in the organic and in the mineral parts of the soil, as corroborated by the findings of numerous Russian and foreign researchers.

About the Authors

A. N. Solodovnikov
Forest Research Institute KarRC RAS
Russian Federation

186910, Petrozavodsk, Pushkinskaya str., 11



V. A. Rozhkov
V.V. Dokuchaev Soil Science Institute
Russian Federation

119017, Moscow, Pizhevskiyper., 7, build. 2



References

1. Arinushkina E.V., Rukovodstvo po himicheskomu analizu pochv (A manual on chemical analysis of soils), Moscow: Moscow State University, 1961, 491 p.

2. Archegova I.B., Kuznetsova E.G., Vliyaniye drevesnykh rasteniy na khimicheskiy sostav atmosfernykh osadkov v protsesse vosstanovleniya sredne-tayezhnykh lesov (The effect of woody plants on the chemical composition of atmospheric precipitation during the restoration of middletaiga forests), Lesovedenie, 2011, No. 3, pp. 34-43.

3. Belousova N.I., Metodicheskiye aspekty sozdaniya pochvennoatributivnoy bazy dannykh (Methodological aspects of creating a soil attributes database), Dokuchaev Soil Bulletin, 2009, No. 64, pp. 23-33.

4. Bykovskaya T.K., Evdokimova T.I., O kharaktere rastitelnogo opada i vliyanii ego na protsessy pochvoobrazovaniya v raznykh tipakh lesa Zvenigorodskoy biostantsii (On the characteristics of plant litter and its effect on soil formation processes in various types of forest at the Zvenigorod biological research station), In: Pochvy i produktivnost' rastitel'nykh soobshchestv (Soils and the productivity of plant communities), Moscow: Moscow State University, 1976. pp. 148-154.

5. Gavrilov K.A., Vliyaniye sostavov lesonasazhdeniy na mikrofloru i faunu lesnykh pochv (The effect of forest stand composition on the microflora and fauna of forest soils), Pochvovedenie, 1950, No. 3, pp. 22-39.

6. Dylis N.V., Struktura lesnogo biogeotsenoza (Forest biogeocoenosis structure), Komarovskie chteniya, XXI, Moscow: Nauka, 1969, 55 p.

7. Zaitsev B.D., Les i pochva (Forest and soil), Moscow: Lesnaya promyshlennost, 1964, 162 p.

8. Zonn S.V., Vliyaniye lesa na pochvu (Forest effect on soil), Moscow: Akademiya nauk SSSR, 1954, 160 p.

9. Zonn S.V., K voprosu o vzaimodeystvii lesnoy rastitelnosti s pochvami (On the interactions of forest vegetation with soils), Pochvovedenie, 1954, No. 4, pp. 51-60.

10. Karpachevskiy L.O., Pestrota pochvennogo pokrova v lesnom biogeotsenoze (Variation of the soil cover in a forest biogeocoenosis), Moscow: Moscow State University, 1977, 312 p.

11. Karpachevskii L.O. et al., Vozdeystviye pologa elnika slozhnogo na khimicheskiy sostav osadkov (The effect of the canopy of a composite spruce stand on the chemical composition of precipitation), Lesovedenie, 1998, No. 1, pp. 50-60.

12. Karpachevskii L.O., Les i lesnyye pochvy (Forest and forest soils), Moscow: Lesnaya promyshlennost, 1981, 264 p.

13. Kolesnikova V.M. et al., Pochvennaya atributivnaya baza dannykh Rossii (Soil attribute database of Russia), Eurasian Soil Science, 2010, Vol. 43, No. 8, pp. 839-847.

14. Lukina N.V., Orlova M.A., Isaeva L.G., Plodorodiye lesnykh pochv kak osnova vzaimosvyazi pochva-rastitelnost (The fertility of forest soils as the basis for the soil-vegetation interrelations), Lesovedenie, 2010, No. 5, pp. 45-56.

15. Menyailo O.V., Vliyaniye drevesnykh porod na biomassu denitrofitsiruyushchikh bakteriy v seroy lesnoy pochve (The effect of woody species on the biomass of denitrifying bacteria in grey forest soil), Pochvovedenie, 2007, No. 3, pp. 331-337.

16. Menyailo O.V., Vliyaniye drevesnykh porod Sibiri na skorost’ mineralizatsii pochvennogo organicheskogo veshchestva (The effect of woody species in Siberia on the soil organic matter mineralization rate), Pochvovedenie, 2009, No. 10, pp. 1241-1247.

17. Mina V.N., Vliyaniye osadkov, stekayushchikh po stvolam derevyev, na pochvu (The effect of stemflow on the soil), Pochvovedenie, 1967, No. 10, pp. 44-52.

18. Molchanov A.A., Vliyaniye lesa na okruzhayushchuyu sredu (Forest effect on the environment), Moscow: Nauka, 1973, 359 p.

19. Morozova R.M., Mineralnyy sostav rasteniy lesov Karelii (The mineral composition of forest plants in Karelia), Petrozavodsk: Goskomizdat KASSR, 1991, 99 p.

20. Novikov S.G., Bazy dannykh po soderzhaniyu tyazhelykh metallov v pochvakh gorodov respubliki Karelii (Databases on the content of heavy metals in urban soils of Karelia), Byulleten nauki i praktiki, 2017, No. 11, pp. 215-220, DOI: 10.5281/zenodo.1048449.

21. Perel T.S., Zavisimost chislennosti i vidovogo sostava dozhdevykh chervey ot porodnogo sostava lesonasazhdeniy (The dependence of earthworm abundance and species composition on the tree species composition of forest stands), Zoologicheskii zhurnal, 1958, Vol. 37, No. 9, pp. 1307-1315.

22. Pristova T.A., Zaboeva I.V., Khimicheskiy sostav atmosfernykh osadkov i lizimetricheskikh vod podzola illyuvialno-zhelezistogo pod khvoyno-listvennymi nasazhdeniyami (Respublika Komi) (The chemical composition of precipitation and percolate in a Ferric Podzol under coniferous-deciduous stands (Komi Republic)), Pochvovedenie, 2007, No. 12, pp. 1472-1481.

23. Razgulin C., Mineralizatsiya azota v pochvakh borealnykh lesov (Nitrogen mineralization in soils of boreal forests), Lesovedenie, 2008, No. 4. p. 57-62.

24. Raznoobraziye pochv i bioraznoobraziye v lesnykh ekosistemakh sredney taygi (The diversity of soils and biodiversity in Middle-taiga forest ecosystems), Moscow: Nauka, 2006, 287 p.

25. Ramenskii L.G., Problemy i metody izucheniya rastitelnogo pokrova (Problems and methods of plant cover studies), Leningrad: Nauka, 1971, 334 p.

26. Remezov N.P., Dinamika vzaimodeystviya shirokolistvennogo lesa s pochvoy (The dynamics of interactions between deciduous forest and soil), Problemypochvovedeniya, Moscow: AN SSSR, 1962, pp. 101-148.

27. Remezov N.P., O roli lesa v pochvoobrazovanii (On the role of forest in soil formation), Pochvovedenie, 1953, No. 12, pp. 74-83.

28. Remezov N.P., Bykova L.N., Smirnova K.M., Potrebleniye i krugovorot azota i zolnykh elementov v lesakh evropeyskoy chasti SSSR (Uptake and cycle of nitrogen and ash elements in forests of European USSR), Moscow: Moscow State University, 1959, 248 p.

29. Rode A.A., K voprosu o roli lesa v pochvoobrazovanii (About the role of forest in soil formation), Pochvovedenie, 1954, No. 5, pp. 50-62.

30. Rodin L.E., Bazilevich N.I., Dinamika organicheskogo veshchestva i biologicheskiy krugovorot v osnovnykh tipakh rastitelnosti (Organic Matter Dynamics and the Biological Cycle in Key Vegetation Types), Moscow, Leningrad: Nauka, 1965, 253 p.

31. Rozhkov V.A. et al., Pochvenno-geograficheskaya baza dannykh Rossii (Soil-geographical database of Russia), Eurasian Soil Science, 2010, Vol. 43, No. 1, pp. 1-4.

32. Sokolov A.V., Agrokhimicheskiye metody issledovaniya pochv (The agrochemical methods of soil studies), Moscow: Nauka, 1975, 656 p.

33. Solodovnikov A.N., Osobennosti genezisa pochv pod melkolistvennymi lesami v srednetayezhnoy podzone Karelii (The characteristics of soil genesis under small-leaved forests in the middle-taiga subzone of Karelia), In: Ekologo-geokhimicheskiye i biologicheskiye zakonomernosti pochvoobrazovaniya v tayezhnykh lesnykh ekosistemakh (Ecological-geochemical and biological patterns of soil formation in boreal forest ecosystems), Petrozavodsk: Karel'skiy nauchnyy tsentr RAN, 2009, pp. 45-67.

34. Solodovnikov A.N., Razrabotka bazy dannykh “Pochvy Karelii” (Development of the database “Soils of Karelia”), Materialy mezhdunarodnoy konferentsii “Resursnyy potentsial pochv - osnova prodovol'stvennoy i ekologicheskoy bezopasnosti” (Proc. Inter. Conf. “The resource potential of soils - a cornerstone of food and ecological security”), Saint Petersburg: Izdatel'skiy dom S.-Peterburgskogo gosudarstvennogo universiteta, 2011, 304 p.

35. Fedorets N.G., Bakhmet O.N., Ekologicheskiye osobennosti transformatsii soyedineniy ugleroda i azota v lesnykh pochvakh (The ecological characteristics of carbon and nitrogen compounds transformation in forest soils), Petrozavodsk: Karel'skiy nauchnyy tsentr RAN, 2003, 240 p.

36. Fridland V.M., Problemy geografii genezisa i klassifikatsii pochv (Problems of soil geography, genesis and classification), Moscow: Nauka, 1986, 243p.

37. Khalafyan A.A., Statisticheskiy analiz dannykh (Statistica 6. Statistical Data Analysis), Moscow: OOO“Binom-press”, 2007, 512 p.

38. Chertov O.G. et al., Dinamicheskoye modelirovaniye protsessov transformatsii organicheskogo veshchestva pochv. Imitatsionnaya model ROMUL (Dynamic modeling of the processes of organic matter transformation in soils. ROMUL simulation model), Saint Petersburg: Izdatel'skiy dom S.-Peterburgskogo gosudarstvennogo universiteta, 2007, 96 p.

39. Shiltsova G.V., Lastochkina V.G., Vliyaniye pologa sosnovogo i berezovogo lesa na khimicheskiy sostav osadkov v zapovednike “Kivach” (The effect of pine and birch forest canopy on the chemical composition of precipitation in the Kivach strict nature reserve), Trudy KarNTS RAN, 2006, No. 10, p. 180-185.

40. Shugalei L.S., Modelirovaniye protsessov vliyaniya osnovnykh dreves-nykh porod na pochvu (Modeling of the processes of major woody species effect on the soil), In: Studies and modeling of soil formation in forest biogeocoenoses, Novosibirsk: Nauka, 1979, pp. 79-153.

41. Shumakov V.S., Tipy lesnykh kultur i plodorodiye pochv (Types of managed forests and soil fertility), Moscow: Goslesbumizdat, 1963, 184 p.

42. Angers D.A., Caron J., Plant-induced changes in soil structure: processes and feedbacks, Biogeochemistry, 1998, Vol. 42, No. 1, pp. 55-72, DOI: 10.1023/A:1005944025343.

43. Augusto L. et al., Impact of several common tree species of European temperate forests on soil fertility, Annals of Forest Science, 2002, Vol. 59, No. 3, pp. 233-253, DOI: 10.1051/forest:2002020.

44. Bergkvist B., Folkeson L., The influence of tree species on acid deposition, proton budgets and element fluxes in south Swedish forest ecosystems, Ecological Bulletins, 1995, pp. 90-99.

45. Binkley D., The influence of tree species on forest soils: processes and patterns, Proceeding of the trees and soil workshop, Lincoln University, Christchurch, New Zealand (28 February - 2 March, 1994), 1995, pp. 1-33.

46. Binkley D., Fisher R.F., Ecology and management of forest soils, John Wiley & Sons Publ., 2013, 368 p.

47. Binkley D., Giardina C., Why do tree species affect soils? The Warp and Woof of tree-soil interactions, Plant-induced soil changes: Processes and feedbacks, Dordrecht: Springer Netherlands, 1998, pp. 89-106, DOI: 10.1007/978-94-017-2691-7_5.

48. Binkley D., Sollins P., Acidification of soils in mixtures of conifers and red alder, Soil Sci. Soc. Am. J., 1990, Vol. 54, pp. 1427-1433.

49. Blonska E. et al., Stand mixing effect on enzyme activity and other soil properties, Soil Science Annual, 2016, Vol. 67, No. 4, pp. 173-178, DOI: 10.1515/ssa-2016-0021.

50. Bonnevie-Svendsen C., Gjems O., Amount and chemical composition of the litter from larch, beech, Norway spruce and Scots pine stands and its effect on the soil, Meddelelser fra det norske skogfors0ksvesen, 1957, Vol. 14, pp. 111 -174.

51. Cortez J., Field decomposition of leaf litters: relationships between decomposition rates and soil moisture, soil temperature and earthworm activity, Soil Biology and Biochemistry, 1998, Vol. 30, No. 6, pp. 783-793, DOI: 10.1016/S0038-0717(97)00163-6.

52. Froberg M. et al., Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden, Forest Ecology and Management, 2011, Vol. 262, No. 9, pp. 1742-1747, DOI: 10.1016/i.foreco.2011.07.033.

53. Gurmesa G.A. et al., Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens, Forest Ecology and Management, 2013, Vol. 309, pp. 47-57, DOI: 10.1016/i.foreco.2013.02.015.

54. Hagen-Thorn A. et al., The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land, Forest Ecology and Management, 2004, Vol. 195, No. 3, pp. 373-384, DOI: 10.1016/i.foreco.2004.02.036.

55. Hansson K. et al., Carbon and nitrogen pools and fluxes above and below ground in spruce, pine and birch stands in southern Sweden, Forest Ecology and Management, 2013, Vol. 309, pp. 28-35, DOI: 10.1016/i.foreco.2013.05.029.

56. Hansson K. et al., Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden, Forest Ecology and Management, 2011, Vol. 262, No. 3, pp. 522-530, DOI: 10.1016/i.foreco.2011.04.021.

57. Helliwell D.R., Floristic diversity in some central Swedish forests, Forestry: An International Journal of Forest Research, 1978, Vol. 51, No. 2, pp. 151-161, DOI: 10.1093/forestry/51.2.151.

58. Jamagne M. et al., Creation and use of a European soil geographic database, 15th World Congress of Soil Science, Transactions, 1994, Vol. 6, pp. 728-742.

59. Jenny H., Role of the plant factor in the pedogenic functions, Ecology, 1958, Vol. 39, No. 1, pp. 5-16, DOI: 10.2307/1929960.

60. Kittredge J., Some characteristics of forest floors from a variety of forest types in California, Journal of Forestry, 1955, Vol. 53, No. 9, pp. 645-647, DOI: 10.1093/iof/53.9.645.

61. Klecka W.R., Discriminant analysis, Beverly Hills, California: Sage Publ., 1980, Vol. 19, 71 p.

62. Legare S. et al., Comparison of the understory vegetation in boreal forest types of southwest Quebec, Canadian Journal of Botany, 2001, Vol. 79, No. 9, pp. 1019-1027, DOI: 10.1139/cib-79-9-1019.

63. Little R.J.A., Rubin D.B., Statistical Analysis with Missing Data, New York: John Wiley & Sons, 2014, 408 p.

64. Lukina N.V. et al., Assessment of sustainable forest management criteria using indicators of the international programme ICP forests, Contemporary Problems of Ecology, 2013, Vol. 6, No. 7, pp. 734-745, DOI: 10.1134/S1995425513070081.

65. Materechera S.A., Dexter A.R., Alston A.M., Formation of aggregates by plant roots in homogenised soils, Plant and Soil, 1992, Vol. 142, No. 1, pp. 69-79, DOI: 10.1007/BF00010176.

66. Menyailo O.V., Zech W., Hungate B.A., Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment: tree species and soil chemistry, Plant and Soil, 2002, Vol. 242, No. 2, pp. 171-182, DOI: 10.1023/A:1016290802518.

67. Ovington J., Studies of the development of woodland conditions under different trees: the forest floor, The Journal of Ecology, 1954, pp. 71-80, DOI: 10.2307/2256979.

68. Petersen H., Luxton M., A Comparative analysis of soil fauna populations and their role in decomposition processes, Oikos, 1982, Vol. 39, No. 3, pp. 288-388, DOI: 10.2307/3544689.

69. Prescott C.E, The influence of the forest canopy on nutrient cycling, Tree physiology, 2002, Vol. 22, No. 15-16. pp. 1193-1200, DOI: 10.1093/treephys/22.15-16.1193.

70. Shi X.Z. et al., Soil Database of 1 : 1 000 000 digital soil survey and reference system of the Chinese genetic soil classification system, Soil Horizons, 2004, Vol. 45, No. 4, pp.129-136.

71. Smith P. et al., A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma, 1997, Vol. 81, No. 1, pp. 153-225, DOI: 10.1016/S0016-7061(97)00087-6.

72. Van Miegroet H., Cole D., The impact of nitrification on soil acidification and cation leaching in a Red Alder ecosystem, Journal of Environmental Quality, 1984, Vol. 13, No. 4, pp. 586-590, DOI: 10.2134/ieq1984.00472425001300040015x.

73. Vesterdal L. et al., Carbon and nitrogen in forest floor and mineral soil under six common European tree species, Forest Ecology and Management, 2007, Vol. 255, No. 1, pp. 35-48, DOI: 10.1016/i.foreco.2007.08.015.

74. Youssef R.A., Chino M., Studies on the behavior of nutrients in the rhizosphere I: Establishment of a new rhizobox system to study nutrient status in the rhizosphere, Journal of Plant Nutrition, 1987, Vol. 10, No. 9-16, pp. 1185-1195, DOI: 10.1080/01904168709363646.


Review

For citations:


Solodovnikov A.N., Rozhkov V.A. Study of the tree species effect on the soil by means of discriminant analysis. Dokuchaev Soil Bulletin. 2019;(96):22-46. https://doi.org/10.19047/0136-1694-2019-96-22-46

Views: 959


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)