Preview

Dokuchaev Soil Bulletin

Advanced search

COMBINATION OF SALINE SOILS OF THE NORTHERN SLOPE OF THE ERGENI UPLAND AFTER IRRIGATION CESSATION

https://doi.org/10.19047/0136-1694-2019-97-52-90

Abstract

The soil cover and soil salinity of the field were studied and the results are given in the article, the explored fileld is located within the Chervlenoye irrigated area belonging to Svetloyarskaya irrigation system (south of the Volgograd region). It was characterized by alternating dark and light wide strips visible on the satellite image. The field was irrigated until the mid-1990s and was subject to secondary salinization, since that time it has been used in dry-farming system. The soil combination is performed by steppe light chestnut solonetzic complex that was transformed due to the surface leveling and irrigation into agrozem accumulative-carbonate segregation saline (Sodic Endoprotosalic Cambisol (Loamic, Aric, Protocalcic, Ochric, Bathygypsic) and Cambic Calcisols (Loamic, Aric)) and deep saline, and agro-light-humus accumulative-carbonate stratified soil. The bright bands on the field mark soils rich in carbonates on the surface (12–13 % CaCO3) (Calcaric Cambisol (Loamic, Aric)) among the other soils that contain less carbonates on the surface by 5–10 times. All the soils are saline, but the salt content varies in space in a wave-like manner, wich disagrees with the satellite image. Two-dimensional distributions of carbonates and salts in the soil combination are discussed. The residual signs of secondary salinization are revealed in the form of calcium and magnesium chlorides two decades after the cessation of irrigation and drawdown of the groundwater curve deeper than 7 m.

About the Authors

N. B. Khitrov
V.V. Dokuchaev Soil Science Institute
Russian Federation
119017, Moscow, Pizhevskiy per., 7, build. 2.


I. N. Gorokhova
V.V. Dokuchaev Soil Science Institute
Russian Federation
119017, Moscow, Pizhevskiy per., 7, build. 2.


E. I. Kravchenko
V.V. Dokuchaev Soil Science Institute
Russian Federation
119017, Moscow, Pizhevskiy per., 7, build. 2.


References

1. Baranovskaya V.A, Azovtsev V.I., Vliyanie orosheniya na migratsiyu karbonatov v pochvakh Povolzh'ya (Influence of irrigation on carbonate migration in the Volga soils), Pochvovedenie, 1981, No. 10, pp. 17–27.

2. Gorokhova I.N., Pankova E.I., Metod distantsionnogo kontrolya za sostoyaniem oroshaemykh zemel' yuga Rossii (The method of remote control over the state of irrigated land in the South of Russia), Aridnye ekosistemy, 1997, Vol. 3, No. 5, pp. 26–34.

3. Gorokhova I.N., Khitrov N.B., Pankova E.I., Prokopyeva K.O., Zasolennost' pochv Svetloyarskogo oroshaemogo massiva v Volgogradskoi oblasti v 2010-kh godakh (Soil salinity of the Svetloyar irrigated massif in the Volgograd region in 2010s years), Dokuchaev Soil Bulletin, 2018, Vol. 93, pp. 75–93, DOI: 10.19047/0136-1694-2018-93-75-93.

4. Gorokhova I.N., Khitrov N.B., Prokop'eva K.O., Kharlanov V.A., Soil cover of the Svetloyarsk Irrigation System after 50 years of reclamation practices, Eurasian Soil Science, 2018, Vol. 51, No. 8, pp. 1–11. DOI: 10.1134/S1064229318060078.

5. Gosudarstvennyi (natsional'nyi) doklad o sostoyanii i ispol'zovanii zemel' v Rossiiskoi Federatsii v 2015 g. (State (national) report on the state and use of land in the Russian Federation in 2015), Ministry of Economy, Moscow, 2016, 202 p.

6. Degtyareva E.T., Zhulidova A.N., Pochvy Volgogradskoi oblasti (Soils of the Volgograd region ), Volgograd: Nizhne-Volzhskoe knizhnoe izd-vo, 1970, 319 p.

7. Shishov L.L., Pankova E.I., Zasolennye pochvy Rossii (Saline soils of Russia), Moscow: IKTs “Akademkniga”, 2006, 853 p.

8. Zimovets B.A., Ekologiya i melioratsiya pochv sukhostepnoi zony (Ecology and soil reclamation of the dry steppe zone), Moscow: Pochvennyi institut imeni V.V. Dokuchaeva, 1991, 249 p.

9. Klassifikatsiya i diagnostika pochv Rossii (Classification and diagnosis of soils of Russia), Smolensk: Oikumena, 2004, 342 p.

10. Klassifikatsiya i diagnostika pochv SSSR (Classification and diagnosis of the soil of the USSR), M.: Kolos, 1977, 223 p.

11. Kravchenko E.I., Khitrov N.B., Gorokhova I.N., Dvumernoe raspredelenie zasoleniya oroshaemykh pochv ryadom s orositel'nym kanalom na uchastke “Chervlenoe” Svetloyarskoi orositel'noi sistemy (Two-dimensional distribution of salinity in irrigated soils near the irrigation channel at the plot “Chervlenoe” of the Svetloyar irrigation system), Dokuchaev Soil Bulletin, 2018, Vol. 94, pp. 19-37, DOI: 10.19047/0136-1694-2018-94-19-37.

12. Kut'kina N.V., Vliyanie dlitel'nogo orosheniya na stepnye pochvy Khakasii (The effect of long-term irrigation on the steppe soils of Khakassia ), Abakan: OOO “Firma Mart”, 2008, 152 p.

13. Lyubimova I. N., Agrogenic evolution of soils in the solonetzic complexes of the dry steppe zone, Eurasian Soil Science, 2002, Vol. 35, No. 7, pp. 792– 802.

14. Lyubimova I.N., Degtyareva E.T., Changes in the carbonate distribution in the soils of solonetzic complexes at agrogenic impact, Eurasian Soil Science, 2000, Vol. 33, No. 7, pp. 746–751.

15. Lyubimova I.N., Novikova A.F., Changes in the properties of solonetzic soil complexes in the dry steppe zone under anthropogenic impacts, Eurasian Soil Science, 2016, Vol. 49, No. 5, pp. 581–590, DOI: 10.1134/S1064229316050112.

16. Nauchnye osnovy predotvrashcheniya degradatsii pochv (zemel') sel'skokhozyaistvennykh ugodii Rossii i formirovaniya sistem vosproizvodstva ikh plodorodiya v adaptivno-landshaftnom zemledelii: T. 1, (Scientific basis for the prevention of soil degradation (land) of agricultural land in Russia and the formation of systems of reproduction of their fertility in adaptive landscape agriculture: Vol. 1.), In: Teoreticheskie i metodicheskie osnovy predotvrashcheniya degradatsii pochv (zemel') sel'skokhozyaistvennykh ugodii (Theoretical and methodological basis for preventing soil degradation (land) of agricultural land), Moscow: Pochvennyi institut imeni V.V. Dokuchaeva Rossel'khozakademii, 2013, 756 p.

17. Novikova A.F., Gepin Lo, Konyushkova M.V., Dinamika protsessov zasoleniya – rassoleniya pochv uchastka “Chervlenoe” Svetloyarskoi orositel'noi sistemy v irrigatsionnyi i postirrigatsionnyi periody (The dynamics of salinization processes - soil desalinization of the Chervlenoe site of the Svetloyarsk irrigation system during the irrigation and post-irrigation periods), Dokuchaev Soil Bulletin, 2009, Vol. 63, pp.16–24.

18. Pankova E.I., Novikova A.F., Ameliorative status and secondary salinization of irrigated soils in Volgograd oblast, Eurasian Soil Science, 2004, Vol. 37, No. 6, pp. 634–645.

19. Polevoi opredelitel' pochv Rossii (Field determinant of the soil of Russia), Moscow: Pochvennyi institut imeni V.V. Dokuchaeva, 2008, 182 p.

20. Prikhod'ko V.E., Oroshaemye stepnye pochvy: funktsionirovanie, ekologiya, produktivnost' (Irrigated steppe soils: functioning, ecology, productivity), Moscow: “Intellekt”, 1996, 179 p.

21. Khitrov N.B., Ponizovskii A.A., Rukovodstvo po laboratornym metodam issledovaniya ionno-solevogo sostava neitral'nykh i shchelochnykh mineral'nykh pochv (Guide to laboratory methods for studying the ion-salt composition of neutral and alkaline mineral soils), Moscow: Pochvennyi institut imeni V.V. Dokuchaeva, 1990, 236 p.

22. Sizemskaya M.L., Sovremennaya prirodno-antropogennaya transformatsiya pochv polupustyni Severnogo Prikaspiya (Modern naturalanthropogenic transformation of the soils of the semi-desert of the Northern Caspian), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2013, 276 p.

23. Slavnyi Yu. A., Halogenesis in soils of the lower Volga region, Eurasian Soil Science, 2003, Vol. 36, No. 1, pp. 1–10.

24. Slavnyi Yu.A., Mel'nikova I.B., Orlova E.M., Izmenenie solevogo sostava zhidkoi fazy pochvogruntov v stepnykh solontsovykh kompleksakh Prikaspiiskogo Zavolzh'ya pri oroshenii (Changes in the salt composition of the liquid phase of soil and soil in steppe solonets complexes of the Caspian Trans-Volga region during irrigation), Pochvovedenie, 1973, No. 11, pp. 92– 100.

25. Slavnyi Yu.A., Tursina T.V., Kauricheva Z.N., K voprosu o genezise zasolennykh pochv v Prikaspii (To the question of the genesis of saline soils in the Caspian Sea), Pochvovedenie, 1970, No. 10, pp. 19–25.

26. Khitrov N.B., Zimovets B.A., Obmennye kationy v neitral'nykh i shchelochnykh pochvakh (Exchange cations in neutral and alkaline soils), In: Fiziko-khimiya pochv i ikh plodorodie (Physics and chemistry of soils and their fertility ), Moscow, 1988, pp. 82–87.

27. Khitrov N.B., Rogovneva L.V., Dobritskaya E.Yu., Dunaeva E.A., Kirilenko N.G., Popovich V.F., Solevoe sostoyanie risovoi sistemy severa Kryma posle prekrashcheniya podachi vody (The salt state of the rice system of the north of Crimea after the cessation of water supply), Tavricheskii vestnik agrarnoi nauki, 2016, No. 3(7), pp. 140–154.

28. Zimovets B.A., Bondarev A.G., Aidarov I.P., Grigor'ev V.Ya., Sudnitsyn I.I., Chizhikova N.P., Khitrov N.B., Korol'kov A.I., Korol'kova T.I., Ekologicheskie trebovaniya k orosheniyu pochv Rossii (Ecological requirements for soil irrigation in Russia ), Moscow: Pochvennyi institut imeni V.V. Dokuchaeva, 1996, 72 p.

29. Aragüés R., Medina E.T., Martínez-Cob A., Faci J., Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid dripirrigated peach orchard, Agricultural Water Management, 2014, Vol. 142, pp. 1–9, DOI: 10.1016/j.agwat.2014.04.004.

30. Chen J.-g., Chen J., Wang Q.-i., Zhang Y., Ding H., Huang Z. , Retrieval of soil dispersion using hyperspectral remote sensing, Indian Society of Remote Sensing, 2016, Vol. 44, Issue 4, pp. 563–572, DOI: 10.1007/s12524-015-0530-9.

31. Ding J., Yu D., Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan –Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments, Geoderma, 2014, Vol. 235–236, pp. 316–322, DOI: 10.1016/j.geoderma.2014.07.028.

32. Gkiougkis I., Kallioras A., Pliakas F., Pechtelidis A., Diamantis V., Diamantis I., Ziogas A., Dafnis I., Assessment of soil salinization at the eastern Nestos River Delta, N.E. Greece, Catena, 2015, Vol. 128, pp. 238– 251, DOI: 10.1016/j.catena.2014.06.024.

33. He B., Cai Y., Ran W., Jiang H., Spatial and seasonal variations of soil salinity following vegetation restoration in coastal saline land in eastern China, Catena, 2014, Vol. 118, pp. 147–153, DOI: 10.1016/j.catena.2014.02.007.

34. He B., Cai Y., Ran W., Zhao X., Jiang H., Spatiotemporal heterogeneity of soil salinity after the establishment of vegetation on a coastal saline field , Catena, 2015, Vol. 127, pp. 129–134, DOI: 10.1016/j.catena.2014.12.028.

35. Herrero J., Castañeda C., Temporal changes in soil salinity at four saline wetlands in NE Spain, Catena, 2015, Vol. 133, pp. 145–156, DOI: 10.1016/j.catena.2015.04.017.

36. IUSS Working Group WRB, 2015, World Reference Base for Soil Resources 2014, update 2015, International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, 192 p.

37. Jiang H., Shu H., Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China, Earth Science Informatics, 2019, Vol. 12, pp. 1–14, DOI: 10.1007/s12145-018-0358-2.

38. Pla Sentis I., Advances in the prognosis of soil sodicity under dryland and irrigated condition , International Soil and Water Conservation Researc, 2014, Vol. 2, No. 4, pp. 50–63.

39. Rahman M.M., Hagare D., Maheshwari B., Framework to assess sources controlling soil salinity resulting from irrigation using recycled water: an application of Bayesian Belief Network, Journal of Cleaner Production, 2015, Vol. 105, pp. 406–419, DOI: 10.1016/j.jclepro.2014.04.068.

40. Ren J., Li X, Zhao K., Quantitative analysis of relationships between crack characteristics and properties of soda-saline soils in Songnen Plain, China, Chinese Geographical Science, 2015, Vol. 25, No. 5, pp. 591–601, DOI: 10.1007/s11769-015-0779-5.

41. Russo D., Laufer A., Bardhan G., Levy G.J., Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study, Journal of Hydrology, 2015, Vol. 531, pp. 198–213, DOI: 10.1016/j.jhydrol.2015.04.013.

42. Scudiero E., Skaggs T.H., Corwin D.L., Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance, Remote Sensing of Environment, 2015, Vol. 169, pp. 335–343, DOI: 10.1016/j.rse.2015.08.026.

43. Sethi M., Bundela D. S., Rajkumar., Diagnosis and prognosis of saltaffected soils and poor-quality waters using remote sensing and proximal techniques, In: Innovative Saline Agriculture, Springer India, 2016, pp. 55–82, DOI: 10.1007/978-81-322-2770-0_3.

44. Sidike A., Zhao S., Wen Y., Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra, International Journal of Applied Earth Observation and Geoinformation, 2014, Vol. 26, pp. 156– 175, DOI: 10.1016/j.jag.2013.06.002.

45. Wang X., Yang J., Liu G., Yao R., Yu S., Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution, Agricultural Water Management, 2015, Vol. 149, pp. 44–54, DOI: 10.1016/j.agwat.2014.10.027.

46. Zhao Y., Li Y., Wang J., Pang H., Li Y., Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils, Soil & Tillage Research, 2016, Vol. 155, pp. 363–370, DOI: 10.1016/j.still.2015.08.019.


Review

For citations:


Khitrov N.B., Gorokhova I.N., Kravchenko E.I. COMBINATION OF SALINE SOILS OF THE NORTHERN SLOPE OF THE ERGENI UPLAND AFTER IRRIGATION CESSATION. Dokuchaev Soil Bulletin. 2019;(97):52-90. (In Russ.) https://doi.org/10.19047/0136-1694-2019-97-52-90

Views: 757


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)