Preview

Dokuchaev Soil Bulletin

Advanced search

VARIATION OF ACID VALUES IN FLOODPLAIN SOILS OF THE AMUR RIVER

https://doi.org/10.19047/0136-1694-2019-98-57-76

Abstract

Understanding the variability of acidic properties in the soil cover of floodplains is of greatest importance as far as it helps to ensure the rational management of floodplain areas, since the pH level is a fundamental indicator that determines the concentration of soluble and available elements for plants. This article provides the results of actual, potential and exchangeable acidity measurements performed in 87 soil profiles located within the upper and middle reaches of the Amur River. Descriptive statistics, correlation and linear regression were used to characterize acidity. It has been established that acidity decreases in the floodplain of the upper and middle reaches of the Amur River in the following direction: alluvial marsh (peat-gley and humus-gley) soils, residually-alluvial (rzhavozems and brunezems) soils, alluvial gray gley soil, alluvial gray humus. The soils of the upper Amur floodplain are more acidic in comparison with the soils of the middle Amur, the average pHKCl values in soils with the same genesis of the former are less by 0.2–0.4 than the ones of the latter. It was revealed that the regression coefficient is indicative of the acid-base functional groups of the soil components which are in charge of soil pH. The coefficient greater than 1 points to the organic nature of acidity; below 1 – to the prevalence of mineral acids.

About the Author

A. V. Martynov
Institute of Geology and Nature Management of the Far East Branch of the Russian Academy of Sciences
Russian Federation


References

1. Efremova T.T., Efremov S.P., Melent'eva N.V., Avrova A.F. Vysotnaya differentsiatsiya kislotno-osnovnykh svoistv dolinnykh torfyanykh pochv Kuznetskogo Alatau (Altitude differentiation of acid-base properties of valley peat soils of the Kuznetsk Alatau), Vestnik Tomskogo gosudarstvennogo universiteta, Biologiya, 2018, No. 41, pp. 135–155, DOI: 10.17223/19988591/41/8.

2. Zaidelman F.R., Genezis i ekologicheskie osnovy melioracii pochv I lanshaftov (Genesis and ecological fundamentals of soil and landscape reclamation), Moscow: KDU, 2009, 720 p.

3. Zimovets B.A., Pochvenno-geokhimicheskie protsessy mussonno-merzlotnykh landshaftov (Soil-geochemical processes of monsoon-frozen landscapes), Moscow: Izd-vo “Nauka”, 1967, 165 p.

4. Ivanov G.I., Pochvoobrazovanie na yuge Dal'nego Vostoka (Soil formation in the south of the Far East), Moscow: Izd-vo “Nauka”, 1976, 200 p.

5. Klassifikatsiya i diagnostika pochv Rossii (Classification and diagnostics of soils of Russia), Smolensk: Oikumena, 2004, 341 p.

6. Kulikov A.Ya., Pochvennye resursy (Soil resources), Minsk: Vysshaya shkola, 2013, 319 p.

7. Martynov A.V. Struktura pochvennogo pokrova pojmy krupnyh rek Amurskoj oblasti (na primere rek Zeya i Selemdzha) (Soil cover structure of bottomland of major river in the Amur region (exemplified by the Zeya and Selemdja Rivers)), Vestnik SVNC DVO RAN, 2013, No. 2, pp. 108–116.

8. Novitskii M.V., Donskikh I.N., Chernov D.V., Laboratorno-prakticheskie zanyatiya po pochvovedeniyu (Laboratory and practical classes in soil science), St. Petersburg: Prospekt Nauki, 2009, 320 p.

9. Oznobikhin V.I., Sinel'nikov E.P., Rybachuk N.A., Klassifikatsiya i agroproizvodstvennye gruppirovki pochv Primorskogo kraya (Classification and agro-industrial groups of soils of the Primorsky krai), Vladivostok: DVO RAN, 1994, 93 p.

10. Kaurichev I.S., Pochvovedenie (Soil Science), Moscow: Agropromizdat, 1989, 719 p.

11. Rasskazov N.M., Osnovnye osobennosti khimicheskogo sostava bolotnykh vod (na primere yugo-vostochnoi chasti Zapadnoi Sibiri) (The main features of the chemical composition of swamp waters (by the example of the southeast of Western Siberia)), Izvestiya Tomskogo politekhnicheskogo universiteta, 2005, Vol. 308, No. 4, pp. 55–58.

12. Sokolova T.A., Khimicheskie osnovy melioratsii kislykh pochv (Chemical basis of acid soil reclamation), Moscow: Izd-vo Mosk. un-ta, 1993, 182 p.

13. Cheverdin Yu.I., Zborishchuk Yu.N., Zakonomernosti izmeneniya pokazatelei kislotnosti chernozemov kamennoi stepi (Patterns of change in the acidity indicators of chernozem stone steppe), Vestnik Moskovskogo universiteta, Pochvovedenie, Ser. 17, 2009, No. 4, pp. 22–25.

14. Ahmed H.M.T., Siddique M. Iqbal, Hussain F., Comparative study of interpolation methods for mapping soil pH in the apple orchards of Murree, Pakistan, Soil and Environment, 2017, Vol. 36, No. 1, pp. 70–76, DOI: 10.25252/SE/17/41154.

15. Amoros C., Bornette G., Antagonistic and cumulative effects of connectivity: a predictive model based on aquatic vegetation in riverine wetlands, Arch. Hydrobiol. Suppl., 1999, Vol. 11, No. 3, pp. 311–327, DOI: 10.1127/lr/11/1999/311.

16. Bayley P.B., Understanding large river – floodplain ecosystems, Bioscience, 1995, Vol. 45, No. 3, pp. 153–158.

17. Blume H.-P., Brummer G.W., Horn R., Kandeler E., Kogel-Knabner I., Kretschmar R., Stahr K., Wilke B.-M., Scheffer / Schachtschabel: Lehrbuch der Bodenkunde, Berlin: Springer, Heidelberg, 2000, 574 p.

18. Caritat P., Cooper M., Wilford J., The pH of Australian soils: field results from a national survey, Soil Research, 2011, Vol. 49, No. 2, pp. 173–182, DOI: 10.1071/SR10121.

19. Cristofor S., Vadineanu A., Ignat G., Importance of flood zones for nitrogen and phosphorus dynamics in the Danube Delta, Hydrobiologia, 1993, Vol. 251, No. 1–3, pp. 143–148, DOI: 10.1007/BF00007174.

20. Kokotov Y.A., Sukhacheva E.Y., Aparin B.F., Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons, Eurasian Soil Science, 2014, Vol. 47, No. 12, pp. 1227–1237, DOI: 10.7868/S0032180X14120077.

21. Koptsik G.N., Livantsova S.Yu., Acidity and cation exchange properties of forest soils in the Russkii Sever National Park, Eurasian Soil Science, 2003, Vol. 63, No. 6, pp. 599–609.

22. Onwuka M.I., Ozurumba U.V., Nkwocha O.S., Changes in Soil pH and Exchangeable Acidity of Selected Parent Materials as Influenced by Amendments in South East of Nigeria, Journal of Geoscience and Environment Protection, 2016, Vol. 4, pp. 80–88, DOI: 10.4236/gep.2016.45008.

23. Pinay G., Black V.J., Planty-Tabacchi A.M., Gumiero B., Décamps H., Geomorphic control of denitrification in large river floodplain soils, Biogeochemistry, 2000, Vol. 50, pp. 163–182, DOI: 10.1023/A:1006317004639.

24. Ponnamperuma F.N., Effects of Flooding on Soils, In: Flooding and plant growth, London: Academic Press, 1984, pp. 9–46.

25. Shamrikova E.V., Kazakov V.G., Sokolova T.A., Variation in the acid-base parameters of automorphic loamy soils in the taiga and tundra zones of the Komi Republic, Eurasian Soil Science, 2011, Vol. 44, No. 6, pp. 641–653, DOI: 10.1134/S1064229311060111.

26. Shamrikova E.V., Sokolova T.A., Correlations between different acidity forms in amorphous loamy soils of the tundra and taiga zones, Eurasian Soil Science, 2013, Vol. 46, No. 5, pp. 505–517, DOI: 10.1134/S1064229313050116.

27. Thomson C.J., Marschner H., Romheld V., Effect of nitrogen fertilizer form on ph of the bulk soil and rhizosphere, and on the growth, phosphorus, and micronutrient uptake of bean, Journal of Plant Nutrition, 1993, Vol. 16, pp. 493–506, DOI: 10.1080/01904169309364548.

28. Wälder K., Wälder O., Rinklebe J., Menz J., Estimation of soil properties with geostatistical methods in floodplains, Archives of Agronomy and Soil Science, 2008, Vol. 54, pp. 275–295, DOI: 10.1080/03650340701488485.


Review

For citations:


Martynov A.V. VARIATION OF ACID VALUES IN FLOODPLAIN SOILS OF THE AMUR RIVER. Dokuchaev Soil Bulletin. 2019;(98):57-76. (In Russ.) https://doi.org/10.19047/0136-1694-2019-98-57-76

Views: 866


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)