The influence of agricultural treatment type on the microbial properties of sod-podzolic soil
https://doi.org/10.19047/0136-1694-2019-99-117-144
Abstract
In this study we examined the effects of conventional agricultural treatment with plowing and no-till treatment on the physical, chemical and microbiological properties of agro-transformed sod-podzolic loamy soil. Soil was sampled in eightfold spatial replication from the arable layers (0–10, 10– 20, 20–30 cm) of field No. 2 of the long-term field experiment of the Center for Precision Agriculture of the Russian State Agrarian University in June, 2018. The crop type on the field No. 2 was vetch and oat mix. Moisture content, water holding capacity, pH, percentage of carbon and nitrogen were determined. The NDVI vegetation index was measured using GreenSeeker HandHeld and used to estimate the plant development intensity. Microbiological properties were assessed by selective plate counts. The abundance and activity were estimated for the next ecological and trophic groups of microorganisms: heterotrophic ammonifiers, aerobic and anaerobic nitrogen-fixing agents, denitrifiers, oligotrophs, cellulolytics. The vegetation index NDVI was higher for plants growing on the plowed part of the field. The differences in microbiological properties when comparing soil samples under no-till and under plowing were insignificant (by t-test for the independent groups comparison). In no-till samples a greater number of micromycetes, including cellulolytic and phytopathogenic, was observed compared to conventional treatment. Profile distributions of bacterial and fungal gene abundances were similar for both treatments according to the paired comparison of samples from different layers. The similarity in microbiological properties was found in the condition of a higher moisture content of the arable layer of the soil and a higher percentage of nitrogen were revealed in the soil under no-till compared with the soil treated by plowing.
About the Authors
A. D. ZhelezovaRussian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 2119017
D. I. Passova
Russian Federation
49 Timiryazevskaya Str., Moscow 127550
D. A. Nikitin
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 2119017
M. A. Yashin
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 2119017
S. V. Zhelezova
Russian Federation
49 Timiryazevskaya Str., Moscow 127550
References
1. Vadyunina A.F., Korchagina Z.A., Metody issledovaniya fizicheskikh svoistv pochv (Methods of studying of physical soil properties), Moscow: Agropromizdat, 1996, 415 p.
2. Vasilenko Y.S., Kutovaya O.V., Tkhakakhova A.K., Martynov A.S., Changes in the intensity of soil-biological processes caused by different-sized aggregates of migrationary-mycelial chernozems, Dokuchaev Soil Bulletin, 2014, Vol. 73, pp.85–97, DOI: 10.19047/0136-1694-2014-73-150-173.
3. Dobrovol’skaya T.G., Zvyagintsev D.G., Chernov I.Y., Golovchenko A.V., Zenova G.M., Lysak L.V., Manucharova N.A., Marfenina O.E., Polyanskaya L.M., Stepanov A.L., Umarov M.M., The role of microorganisms in the ecological functions of soils, Eurasian Soil Science, 2015, Vol. 48, No. 9, pp. 959–967. DOI: 10.7868/S0032180X15090038.
4. Egorov N.S., Praktikum po mikrobiologii (Laboratory manual for microbiology studies), Moscow: Izdatelstvo Moskovskogo universitetata, 1976, 307 p.
5. Zhelezova A.D., Tkhakakhova A.K., Yaroslavtseva N. V., Garbuz S.A., Lazarev V.I., Kogut B.M., Kutovaya O. V., Kholodov V.A., Microbiological parameters of aggregates in typical chernozems of long-term field experiments, Eurasian Soil Science, 2017, No. 50, pp. 701–707, DOI: 10.7868/S0032180X15090038.
6. Zhelezova S.V., Akimov T.A., Beloshapkina O.O., Berezovsky E.V., Vliyanie raznykh tekhnologii vozdelyvaniya ozimoi pshenitsy na urozhainost' i fitosanitarnoe sostoyanie posevov (na primere polevogo opyta Tsentra tochnogo zemledeliya RGAU-MSKhA im. K.A. Timiryazeva) (The productivity and phytosanitary status of winter wheat crops under different cultivation technologies (in the field experiment at Precision Agriculture Centre), Agrokhimiya, 2017, No. 4, pp. 65–75.
7. Kiryushin V.I., Nasledie V.R. Vil'yamsa i sovremennye problemy agropochvovedeniya (The heritage of V.R. Villiams and modern problems of agricultural soil science), Izvestiya TSKhA, 2014, No. 1, pp. 5–15.
8. Kutovaya O.V., Tkhakakhova A.K., Cheverdin Yu.I., Effects of surface flooding on biological properties of meadow-chernozems in Kamennaya Steppe, Dokuchaev Soil Bulletin, 2016, Vol. 82, pp. 56–70, DOI: 10.19047/0136-1694-2016-82-56-70.
9. Kutovaya O.V., Grebennikov A.M., Tkhakakhova A.K., Isaev V.A., Garmashov V.M., Bespalov V.A., Cheverdin Yu.I., Belobrov V.P., The changes in soil-biological processes and structure of microbial community of agrochernozems in conditions of different ways of soil cultivation, Dokuchaev Soil Bulletin, 2018, No. 92, pp. 35–61, DOI: 10.19047/0136-1694-2018-92-35-61.
10. Mel'nikov A.V., Zhelezova S.V., Traditsionnaya vspashka ili nulevaya tekhnologiya – chto vygodnee dlya proizvodstva ozimoi pshenitsy v nechernozemnoi zone Rossii? (Conventional tillage or no-till – what is more beneficial for winter wheat production in nonchernozem belt of Russia?), Teoreticheskie i prikladnye problemy APK, 2019, Vol. 39, No. 1, pp. 35–40, DOI: 10.32935/2221-7312-2019-39-1.
11. Mirchink T.G., Pochvennaya mikologiya (Soil mycology), Moscow: Izdatelstvo Moskovskogo universitetata, 1988, 220 p.
12. Orlova L.V., Chernov N.D., Nauchno-prakticheskoe rukovodstvo po osvoeniyu i primeneniyu sberegayushchego zemledeliya. Rekomendatsii. (Recommendations for the research and practice of conservative agriculture), Moscow: Evrotekhnika, 2006, 183 p.
13. Patyka N.V., Kruglov Yu.V., Tikhonovich I.A., Patyka V.F., Profil' polimorfizma dlin restriktsionnykh fragmentov (tRFLP) kompleksa prokariotnykh mikroorganizmov podzolistykh pochv (tRFLP of microbial complex of sod-podzolic soils), Dopovidi Natsional'noї akademiї nauk Ukraїni, 2009, Vol. 1, pp. 187–192.
14. Poddymkina L.M., Vliyanie dlitel'nogo primeneniya sredstv khimizatsii na mikrobiologicheskuyu aktivnost' dernovo-podzolistoi pochvy (The influence of long-term application of agricultural chemicals on the microbiological activities of sod-podzolic soils), Izvestiya TSKha, 2008, No. 2, pp. 5–17.
15. Semenov A.M., Bubnov I.A., Semenov V.M., Semenova E.V., Zelenev V.V., Semenova N.A., Daily dynamics of bacterial numbers, CO 2 emissions from soil and relationships between their wavelike fluctuations and succession of the microbial community, Eurasian Soil Science, 2013, Vol. 2013, No. 8, pp. 963–979, DOI: 10.7868/S0032180X13080078.
16. Stepanov A.L., Mikrobnaya transformatsiya parnikovykh gazov v pochvakh (Microbial transformation of greenhouse gases in soils), Moscow: GEOS, 2011, 192 p.
17. Tepper E.Z., Shil'nikova V.K., Pereverzeva G.I., Praktikum po mikrobiologii (Laboratory manual for microbiology studies), Moscow: Drofa, 2005, 256 p.
18. Khitrov N.B., Pochvy dlitel'nogo polevogo opyta TSKhA (Soils of long-term field experiment of RSAU – Moscow Timiryazev Agricultural Academy), Izvestiya TSKhA, 2012, No. 3, pp. 62–78.
19. Agtmaal van M., Straathof A.L., Termorshuizen A., Lievens B., Hoffland E., de Boer W., Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition, Soil Biol. Biochem., 2018, Vol. 117, pp. 164–174, DOI: 10.1016/j.soilbio.2017.11.015.
20. Babin D., Deubel A., Jacquiod S., Sørensen S.J., Geistlinger J., Grosch R., Smalla K., Impact of long-term agricultural management practices on soil prokaryotic communities, Soil Biol. Biochem., 2018, Vol. 129, pp. 17–28, DOI: 10.1016/j.soilbio.2018.11.002.
21. Bissett A., Richardson A.E., Baker G., Thrall P.H., Long-term land use effects on soil microbial community structure and function, Appl. Soil Ecol., 2011, Vol. 51, pp. 66–78, DOI: 10.1016/j.apsoil.2011.08.010.
22. Blanco-Canqui H, Lal R. No-Tillage and Soil-Profile Carbon Sequestration: An On-Farm Assessment // Soil Sci Soc Am J. 2008. Vol. 72. P. 693–701, DOI: 10.2136/sssaj2007.0233.
23. Bobbink R., Hicks K., Galloway J., Spranger T., Alkemade R., Ashmore M., Bustamante M., Cinderby S., Davidson E., Dentener F., Emmett B., Erisman J.W., Fenn M., Gilliam F., Nordin A., Pardo L., De Vries W., Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis, Ecol. Appl., 2010, Vol. 20, pp. 30–59, DOI: 10.1890/08-1140.1.
24. Capelle C. van, Schrader S., Brunotte J., Tillage-induced changes in the functional diversity of soil biota – A review with a focus on German data, Eur. J. Soil Biol., 2012, Vol. 50, pp. 165–181, DOI: 10.1016/j.soilbio.2017.11.015.
25. Diepeningen A.D. Van, De Vos O.J., Korthals G.W., Van Bruggen A.H.C., Effects of organic versus conventional management on chemical and biological parameters in agricultural soils, Appl. Soil Ecol., 2006, Vol. 31, pp. 120–135, DOI: 10.1016/j.apsoil.2005.03.003.
26. Domsch K.H., Gams W., Anderson T.-H., Compendium of Soil Fungi, Eching: IHW-Verlag, 2007. 672 p., DOI: 10.1111/j.1365-2389.2008.01052_1.x.
27. Ellis M.B., Dematiaceous Hyphomycetes, Mycological Papers, 1971, Vol. 125, pp. 1–30.
28. Gras C., Hernández V. Hegemony, Technological Innovation and Corporate Identities: 50 Years of Agricultural Revolutions in Argentina, Journal of agrarian change, 2016, Vol. 16, pp. 675–683, DOI: 10.1111/joac.12162
29. Hydbom S., Ernfors M., Birgander J., Hollander J., Jensen E.S., Olsson P.A., Reduced tillage stimulated symbiotic fungi and microbial saprotrophs, but did not lead to a shift in the saprotrophic microorganism community structure, Appl. Soil Ecol., 2017, Vol. 119, pp. 104–114, DOI: 10.1016/j.apsoil.2017.05.032.
30. Kaurin A., Mihelič R., Kastelec D., Grčman H., Bru D., Philippot L., Suhadolc M., Resilience of bacteria, archaea, fungi and N-cycling microbial guilds under plough and conservation tillage, to agricultural drought, Soil Biol. Biochem., 2018, Vol. 120, pp. 233–245, DOI: 0.1016/j.soilbio.2018.02.007.
31. Martínez I., Chervet A, Weisskopf P., Sturny W.G., Etana A., Stettler M., Forkman J., Keller T., Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile // Soil Tillage Res. 2016. Vol. 163. P. 141–151, DOI: 10.1016/j.still.2016.05.021.
32. Mishra U., Ussiri D.A.N., Lal R., Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA, Soil Tillage Res., 2010, Vol. 107, pp. 88–96, DOI: 10.1016/j.still.2010.02.005.
33. Rahman M., Okubo A., Sugiyama S., Mayland H. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice // Soil Tillage Res, 2008. Vol. 101. P. 10–19, DOI: 10.1016/j.still.2008.05.006.
34. Rainbow R., Derpsch R., Advances in no-till farming technologies and soil compaction management in rainfed farming systems, Rainfed farming systems, 2011, pp. 991–1014.
35. Schmidt R., Mitchell J., Scow K., Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities, Soil Biol. Biochem, 2019, Vol. 129, pp. 99–109, DOI: 10.1016/j.soilbio.2018.11.010.
36. Semenov M.V., Chernov T.I., Tkhakakhova A.K., Zhelezova A.D., Ivanova E.A., Kolganova T.V., Kutovaya O.V., Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century, Appl. Soil Ecol., 2018, Vol. 127, pp. 8–18, DOI: 10.1016/j.apsoil.2018.03.00.
37. Simmons B.L., Coleman D.C., Microbial community response to transition from conventional to conservation tillage in cotton fields, Appl. Soil Ecol., 2008, Vol. 40, pp. 518–528, DOI: 10.1016/j.apsoil.2008.08.003.
38. Souza R.C., Hungria M., Cantão M.E., Vasconcelos A.T.R., Nogueira M.A., Vicente V.A., Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop- management regimes, Appl. Soil Ecol., 2015, Vol. 86, pp. 106–112, DOI: 10.1016/j.apsoil.2014.10.010.
39. Upchurch R., Chiu C.Y., Everett K., Dyszynski G., Coleman D.C., Whitman W.B., Differences in the composition and diversity of bacterial communities from agricultural and forest soils, Soil Biol. Biochem., 2008, Vol. 40, pp. 1294–1305, DOI: 10.1016/j.soilbio.2007.06.027.
40. Widmer F., Rasche F., Hartmann M., Fliessbach A., Community structures and substrate utilization of bacteria in soils from organic and conventional farming systems of the DOK long-term field experiment, Appl. Soil Ecol., 2006, Vol. 33, pp. 294–307, DOI: 10.1016/j.apsoil.2005.09.007.
Review
For citations:
Zhelezova A.D., Passova D.I., Nikitin D.A., Yashin M.A., Zhelezova S.V. The influence of agricultural treatment type on the microbial properties of sod-podzolic soil. Dokuchaev Soil Bulletin. 2019;(99):117-144. (In Russ.) https://doi.org/10.19047/0136-1694-2019-99-117-144