Preview

Dokuchaev Soil Bulletin

Advanced search

The heterogeneity of the properties of the coprolites Aporrectodea caliginosa and Lumbricus rubellus in model experiment with chernozem soil

https://doi.org/10.19047/0136-1694-2019-99-92-116

Abstract

The changes in the physical and microbiological properties of the coprolites of earthworms Aporrectodea caliginosa and Lumbricus rubellus were evaluated in laboratory experiments using the arable horizon of migratory-mycelial chernozem. In coprolites the following physical parameters were determined: particle size distribution, specific surface area, calculated by the effective particle diameter; microbiological parameters: the total number of cultured bacteria and the enzymatic kinetics of lipases according to the Michaelis –Menten model with the calculation of the maximum reaction rate (Vm) and Michaelis constant (Km). The model experiment included two stages: the first stage – earthworms of two species were kept together, in the second – separately. The control was the source soil and the soil with litter. Coprolites and the soil in which earthworms lived were analyzed and compared with the control. Two types of earthworms give a non-additive effect on physical and microbiological properties. Depending on the species composition, the nature of the change is different. For the two species contained together a decrease in the specific surface area in coprolites was noted, as well as an increase in the fraction of the fine sand due to the reduction of the fractions of silt, fine and medium dust. For A. caliginosa kept separately it was found, that the specific surface of coprolites increases compared to the control, the silt and fine, medium, coarse dust, fractions rise due to a significant reduction of the fine sand fraction. For L. rubellus coprolites a decrease in the specific surface area, an increase in the fractions of medium, fine sand and coarse dust, due to the reduction of silt, fine and medium dust fractions, are shown. The number of cultured heterotrophic bacteria is higher in coprolites compared to the control. The greatest increase is observed in the variant where two species are kept together. The lipase activity (Vm) of the soil also increases when two species are kept together compared with the control and with A. caliginosa kept separately. Under the influence of L. rubellus the lipase activity decreases. Coprolites differ in all the investigated properties from the control (soil and soil with litter), as well as from the soil where earthworms lived.

About the Authors

O. A. Frolov
V.V. Dokuchaev Soil Science Institute
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 2119017



A. V. Yakushev
Lomonosov Moscow State University
Russian Federation

1 Leninskie Gori, Moscow 119234



E. Yu. Milanovskiy
V.V. Dokuchaev Soil Science Institute; Lomonosov Moscow State University
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 2119017;

1 Leninskie Gori, Moscow 119234



References

1. Byzov B.A., Jakushev A.V., Mikrobiologicheskaja harakteristika vermikompostirovanija metodom mul'tisubstratnogo testirovanija (Microbiological characteristics of vermicomposting by the method of multisubstrate testing), Pochvovedenie, 2008, No. 11, pp. 1381–1387, DOI: 10.1134/S1064229308110112.

2. Vsevolodova-Perel' T.S., Dozhdevye chervi: Kadastr i opredelitel' (Earthworms: Cadastre and qualifier), Moscow: Nauka, 1997, 102 p.

3. Dadenko E.V., Kazeev K.Sh., Vlijanie razlichnyh srokov i sposobov hranenija pochvennyh obrazcov na fermentativnuju aktivnost' chernozema (The influence of different terms and methods of storing soil samples on the enzymatic activity of chernozem), Izvestija vysshih uchebnyh zavedenij. Severo-Kavkazskij region, Natural Sciences, 2004, No. 6, pp. 61–65.

4. Zvyagintsev D.G., Bab'eva I.P., Zenova G.M., Biologiya pochv (Soil biology), Moscow: Izd-vo Mosk. un-ta, 2005. 445 p.

5. Kireeva N.A., Markarova M.Yu., Shchemelinin T.N., Rafikova G.F., Fermentativnaya i mikrobiologicheskaya aktivnost' zagryaznennykh neft'yu gleepodzolistykh pochv na raznykh stadiyakh ikh vosstanovleniya (Enzymatic and microbiological activity of oil-contaminated geysodzol soils at different stages of their restoration), Vestnik Bashkirskogo universiteta, 2006, Vol. 11, No. 4, pp. 56–60.

6. Kutovaya O.V., Grebennikov A.M., Tkhakakhova A.K., Isaev V.A., Garmashov V.M., Bespalov V.A., Cheverdin Y.I., Belobrov V.P., The changes in soil-biological processes and structure of microbial community of agrochernozems in conditions of different ways of soil cultivation, Dokuchaev Soil Bulletin, 2018, Vol. 92, pp. 35–61, DOI: 10.19047/0136-1694-2018-92-35-61.

7. Kutovaya O.V., Characteristics of humus and coprolites of earthworms in agro-soddy podzolic soils, Dokuchaev Soil Bulletin, 2012, Vol. 69, pp. 46–59, DOI: 10.19047/0136-1694-2012-69-46-59.

8. Perel' T.S., Rasprostranenie i zakonomernosti raspredeleniya dozhdevykh chervei fauny SSSR (Distribution and distribution patterns of earthworms of the fauna of the USSR), Moscow: Nauka, 1979, 272 p.

9. Tikhonov V.V., Byzov B.A., Zavgorodnyaya Y.A., Demin V.V., Earthworms as modifiers of the structure and biological activity of humic acids, Biol. Bull. Russ. Acad. Sci., 2011, Vol. 38, Issue 1, pp. 17–24, DOI: 10.1134/S1062359010061032.

10. Frolov O.A., Yakushev A.V., The impact of passage through the intestine of the earthworm Aporrectodea caliginosa on the bacterial community, Dokuchaev Soil Bulletin, 2018, Vol. 94, pp. 57–73, DOI: 10.19047/0136-1694-2018-92-57-73.

11. Khramchenkova O., Veremeev V., Bachura Yu., Vodorosli pochv i koprolitov dozhdevykh chervei v lugovykh ekosistemakh (Algae of soils and coprolites of earthworms in meadow ecosystems), Nauka i innovatsii, 2012, No. 108, pp. 67–70.

12. Chernov T.I., Kholodov V.A., Kogut B.M., Ivanov A.L., The Method of Microbiological Soil Investigations within the Framework of the Project “Microbiome of Russia”, Dokuchaev Soil Bulletin, 2017, Vol. 87, pp. 100–113, DOI: 10.19047/0136-1694-2017-87-100-113.

13. Yurkov A.M., Chernov I.Y., Tiunov A.V., Influence of Lumbricus terrestris earthworms on the structure of the yeast community of forest litter, Microbiology, 2008, Vol. 77, Issue 1, pp. 121–125, DOI: 10.1134/S0026261708010153.

14. Bal L., Morphological investigation in two moder-humus profiles and the role of the soil fauna in their genesis, Geoderma, 1970, Vol. 4, Issue 1, pp. 5–36, DOI: 10.1016/0016-7061(70)90030-3.

15. Bi Y.M., Tian G.L., Wang C., Zhang Y., Wang D.N., Zhang F.F., Sun Z.J., Differential effects of two earthworm species on Fusarium wilt of strawberry, Appl. Soil Ecology, 2018, Vol. 126, pp. 174–181, DOI: 10.1016/j.apsoil.2018.02.024.

16. Blouin M., Hodson M.E., Delgado E.A., Baker G., Brussaard L., Butt K.R., Cluzeau D., A review of earthworm impact on soil function and ecosystem services, European Journal of Soil Science, 2013, Vol. 64, Vol. 2, pp. 161–182, DOI: 10.1111/ejss.12025.

17. Edwards, Clive A., Earthworm ecology, CRC press, 2004, 456 p.

18. Filser J., Faber J.H., Tiunov A.V., Brussaard L., Frouz J., Deyn G.D., Uvarov A.V., Berg M.P., Lavelle P., Loreau M., Wall D.H., Querner P., Eijsackers H., Jiménez J.J., Soil fauna: key to new carbon models, Soil, 2016, No. 2, pp. 565–582, DOI: 10.5194/soil-2-565-2016.

19. Frouz J., Livečková M., Albrechtová J., Chroňáková A., Cajthaml T., Pižl V., Šimáčková H., Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites, Forest Ecology and Management, 2013, Vol. 309, pp. 87–95, DOI: 10.1016/j.foreco.2013.02.013.

20. Huang K., Xia H., Role of earthworms' mucus in vermicomposting system: Biodegradation tests based on humification and microbial activity, Sci. Total Environ., 2018, Vol. 610–611, pp. 703–708, DOI: 10.1016/j.scitotenv.2017.08.104.

21. Laverack N.S., Mechanistic mathematical models of microbial growth in bioreactors and in natural soils: explanation of complex phenomena, Mathematics and Computers in Simulation, 1996, Vol. 42, Issue 2–3, pp. 179–186, DOI: 10.1016/0378-4754(95)00127-1.

22. Ma Y., Filley T.R., Johnston C.T., Crow S.E., Szlavecz K., McCormick M.K., The combined controls of land use legacy and earthworm activity on soil organic matter chemistry and particle association during afforestation, Organic geochemistry, 2013, Vol. 58, pp. 56–68, DOI: 10.1016/j.orggeochem.2013.02.010.

23. Peigne J., Vian J.F., Payet V., Saby N.P., Soil fertility after 10 years of conservation tillage in organic farming, Soil and Tillage Res., 2018, Vol. 175, pp. 194– 204, DOI: 10.1016/j.still.2017.09.008.

24. Römbke J., Jänsch S., Didden W., Römbke J., Jänsch S., Didden W., The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 2005, Vol. 62, Issue 2, pp. 249–265, DOI: 10.1016/j.ecoenv.2005.03.027.

25. Sanchez-Hernandez J.C., Biochar activation with exoenzymes induced by earthworms: A novel functional strategy for soil quality promotion, J. Hazardous Materials, 2018, Vol. 350, pp. 136–143, DOI: 10.1016/j.jhazmat.2018.02.019.

26. Sanchez-Hernandez J.C., del Pino J.N., Capowiez Y., Mazzia C., Rault M., Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms, Sci. Total Environ., 2018, Vol. 612, pp. 1407–1416, DOI: 10.1016/j.scitotenv.2017.09.043.

27. Satchell J.E., Earthworm microbiology, Earthworm ecology from Darwin to vermiculture, London, N.Y, 1983, pp. 351–364, DOI: 10.1007/978-94-009-5965-1.

28. Schnürer J., Rosswall T., Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter, Appl. Environ. Microbiol., 1982, Vol. 43(6), pp. 1256–1261.

29. Zhimin Y.U.A.N., Haijun L.I.U., Jun H.A.N., Jingjing S.U.N., Xiaoying W.U., Jun, Y.A.O., Monitoring soil microbial activities in different cropping systems using combined methods, Pedosphere, 2017, Vol. 27, No. 1, pp. 138–146, DOI: 10.1016/S1002-0160(15)60100-X.


Review

For citations:


Frolov O.A., Yakushev A.V., Milanovskiy E.Yu. The heterogeneity of the properties of the coprolites Aporrectodea caliginosa and Lumbricus rubellus in model experiment with chernozem soil. Dokuchaev Soil Bulletin. 2019;(99):92-116. (In Russ.) https://doi.org/10.19047/0136-1694-2019-99-92-116

Views: 968


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)