Preview

Бюллетень Почвенного института имени В.В. Докучаева

Расширенный поиск

Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in Google Earth Engine (GEE) cloud-based platform

https://doi.org/10.19047/0136-1694-2019-100-36-52

Полный текст:

Аннотация

High-quality soils are an important resource affecting the quality of life of human societies, as well as terrestrial ecosystems in general. Thus, soil erosion and soil loss are a serious issue that should be managed, in order to conserve both artificial and natural ecosystems. Predicting soil erosion has been a challenge for many years. Traditional field measurements are accurate, but they cannot be applied to large areas easily because of their high cost in time and resources. The last decade, satellite remote sensing and predictive models have been widely used by scientists to predict soil erosion in large areas with cost-efficient methods and techniques. One of those techniques is the Revised Universal Soil Loss Equation (RUSLE). RUSLE uses satellite imagery, as well as precipitation and soil data from other sources to predict the soil erosion per hectare in tons, in a given instant of time. Data acquisition for these data-demanding methods has always been a problem, especially for scientists working with large and diverse datasets. Newly emerged online technologies like Google Earth Engine (GEE) have given access to petabytes of data on demand, alongside high processing power to process them. In this paper we investigated seasonal spatiotemporal changes of soil erosion with the use of RUSLE implemented within GEE, for Pindos mountain range in Greece. In addition, we estimated the correlation between the seasonal components of RUSLE (precipitation and vegetation) and mean RUSLE values.

Об авторах

S. Papaiordanidis
Laboratory of Forest Management and Remote Sensing, Aristotle University of Thessaloniki
Греция


I.Z. Gitas
Laboratory of Forest Management and Remote Sensing, Aristotle University of Thessaloniki
Греция


T. Katagis
Laboratory of Forest Management and Remote Sensing, Aristotle University of Thessaloniki
Греция


Список литературы

1. Angima S., Stott D., O’neill M., Ong C., Weesies G., Soil erosion prediction using RUSLE for central Kenyan highland conditions, Agriculture, ecosystems & environment, 2003, Vol. 97, No. 1–3, pp. 295–308.

2. Ballabio C., Borrelli P., Spinoni J., Meusburger K., Michaelides S., Beguería S., Klik A., Petan S., Janeček M., Olsen. P., Mapping monthly rainfall erosivity in Europe, Science of the Total Environment, 2017, Vol. 579, pp. 1298–1315.

3. Castillo C., Pérez R., James M.R., Quinton J., Taguas E.V., Gómez J.A., Comparing the accuracy of several field methods for measuring gully erosion, Soil Science Society of America Journal, 2012, Vol. 76, No. 4, pp. 1319–1332.

4. Desmet P., Govers G., A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units, Journal of soil and Water Conservation, 1996, Vol. 51, No. 5, pp. 427–433.

5. Doyle C., A dictionary of marketing, Oxford University Press.

6. Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B., Isola C., Laberinti P., Martimort P., Sentinel-2: ESA's optical high-resolution mission for GMES operational services, Remote sensing of Environment, 2012, Vol. 120, pp. 25–36.

7. Fernandez C., Wu J., McCool D., Stöckle C., Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD, Journal of soil and Water Conservation, 2003, Vol. 58, No. 3, pp. 128–136.

8. Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R., Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote sensing of Environment, 2017, Vol. 202, pp. 18–27.

9. Lal R., Soil erosion impact on agronomic productivity and environment quality, Critical reviews in plant sciences, 1998, Vol. 17, No. 4, pp. 319–464.

10. Lane S.N., Westaway R.M., Murray Hicks D., Estimation of erosion and deposition volumes in a large, gravel‐bed, braided river using synoptic remote sensing, Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2003, Vol. 28, No. 3, pp. 249–271.

11. Lehner B., Verdin K., Jarvis A., New global hydrography derived from spaceborne elevation data, Eos, Transactions American Geophysical Union, 2008, Vol. 89, No. 10, pp. 93–94.

12. Lu D., Li G., Valladares G.S., Batistella M., Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS, Land degradation & development, 2004, Vol. 15, No. 5, pp. 499–512.

13. Mallinis G., Gitas I.Z., Tasionas G., Maris F., Multitemporal monitoring of land degradation risk Due to soil loss in a fire-prone Mediterranean landscape using multi-decadal Landsat imagery, Water resources management, 2016, Vol. 30, No. 3, pp. 1255–1269.

14. Millward A.A., Mersey J.E., Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed, Catena, 1999, Vol. 38, No. 2, pp. 109–129.

15. Mohammad A.G., Adam M.A., The impact of vegetative cover type on runoff and soil erosion under different land uses, Catena, 2010, Vol. 81, No. 2, pp. 97–103.

16. Morgan R.P.C., Soil erosion and conservation, John Wiley & Sons.

17. Panagos P., Ballabio C., Borrelli P., Meusburger K., Klik A., Rousseva S., Tadić M.P., Michaelides S., Hrabalíková M., Olsen P., Rainfall erosivity in Europe, Science of the Total Environment, 2015a, Vol. 511, pp. 801–814.

18. Panagos P., Borrelli P., Meusburger K., A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water, Geosciences, 2015b, Vol. 5, No. 2, pp. 117–126.

19. Panagos P., Van Liedekerke M., Jones A., Montanarella L., European Soil Data Centre: Response to European policy support and public data requirements, Land use policy, 2012, Vol. 29, No. 2, pp. 329–338.

20. Pandey A., Chowdary V., Mal B., Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing, Water resources management, 2007, Vol. 21, No. 4, pp: 729–746.

21. Rahman M.R., Shi Z., Chongfa C., Soil erosion hazard evaluation – an integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies, Ecological Modelling, 2009, Vol. 220, No. 13–14, pp. 1724–1734.

22. Renard K.G., Foster G.R., Weesies G., McCool D., Yoder D., Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), United States Department of Agriculture Washington, DC.

23. Renard K.G., Foster G.R., Weesies G.A., Porter J.P., RUSLE: Revised universal soil loss equation, Journal of soil and Water Conservation, 1991, Vol. 46, No. 1, pp. 30–33.

24. Touchan R., Baisan C., Mitsopoulos I.D., Dimitrakopoulos A.P., Fire history in European black pine (Pinus nigra Arn.) forests of the Valia Kalda, Pindus mountains, Greece, Tree-Ring Research, 2012, Vol. 68, No. 1, pp. 45–51.

25. Van der Knijff J, Jones R., Montanarella L., Soil erosion risk assessment in Italy, Citeseer, 1999.

26. Wilcox B.P., Breshears D.D., Allen C.D., Ecohydrology of a resource‐conserving semiarid woodland: Effects of scale and disturbance, Ecological Monographs, 2003, Vol. 73, No. 2, pp. 223–239.

27. Wischmeier W.H., Smith D.D., Predicting rainfall erosion losses-a guide to conservation planning, Predicting rainfall erosion losses-a guide to conservation planning, 1978, Iss. 537, 58 p.


Для цитирования:


., ., . . Бюллетень Почвенного института имени В.В. Докучаева. 2019;(100):36-52. https://doi.org/10.19047/0136-1694-2019-100-36-52

For citation:


Papaiordanidis S., Gitas I., Katagis T. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in Google Earth Engine (GEE) cloud-based platform. Dokuchaev Soil Bulletin. 2019;(100):36-52. https://doi.org/10.19047/0136-1694-2019-100-36-52

Просмотров: 74


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)