Preview

Dokuchaev Soil Bulletin

Advanced search

Estimation of soil saturation with organic carbon

https://doi.org/10.19047/0136-1694-2020-102-103-124

Abstract

New definitions of “soil carbon sequestration” and “soil carbon deposition” on a quantitative basis taking into account the period of the complete turnover of accumulated organic matter and its distribution over the soil profile are formulated. The carbon protection capacity of soils in the European part of Russia was determined according to Hassink (1997) and Six et al. (2002) based on data of the fine fractions content and the mineralogical composition of soils. The carbon saturation degree of soils and their carbon sequestration potential were calculated according to Meyer et al. (2017) and Wiesmeier et al. (2014). Gray forest and chestnut soils were classified as poorly saturated with organic carbon, meadow slitized and floodplain meadow soils were moderately saturated, and chernozems was saturated. It has been shown that the carbon sequestration potential of gray forest soil is about 30 t C ha-1, chestnut soil does not exceed 25 t C ha-1, meadow soil is 1520 t C ha-1, and chernozem is less than 5 t C ha-1. Critical remarks to the 4 ppm initiativewere given.

About the Authors

B. M. Kogut
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017


V. M. Semenov
Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences
Russian Federation
2 Institutskaya Str., Pushchino, 142290


References

1. Edinyi gosudarstvennyi reestr pochvennykh resursov Rossii, Versiya 1.0 (Unified State Register of Soil Resources of Russia. Version 1.0.), Moscow: V.V. Dokuchaev Soil Science Institute, 2014, 768 p.

2. Kogut B.M., Izmenenie soderzhaniya, sostava i prirody gumusovykh veshchestv pri sel'skokhozyaistvennom ispol'zovanii tipichnogo moshchnogo chernozema: Avtoref. dis. … kand. s.-kh. nauk (Changes in the content, composition and nature of humic substances during agricultural use of a typical powerful black soil, Extended abstract of cand. agric. sci. thesis), Moscow, 1982, 24 p.

3. Korolev V.A., Sovremennoe fizicheskoe sostoyanie chernozemov tsentra Russkoi ravniny (The current physical condition of chernozems in the center of the Russian Plain), Voronezh, 2008, 313 p.

4. Malyukova L.S., Optimizatsiya plodorodiya burykh lesnykh pochv i primeneniya mineral'nykh udobrenii pri vyrashchivanii chaya v usloviyakh chernomorskogo poberezh'ya Rossii: Dis. … dokt. biol. nauk (Optimization of the fertility of brown forest soils and the use of mineral fertilizers when growing tea under the conditions of the Black Sea coast of Russia, Dr. biol. sci. thesis), Sochi, 2013, 382 p.

5. Semenov V.M., Kogut B.M., Pochvennoe organicheskoe veshchestvo (Soil organic matter), Moscow: GEOS, 2015, 233 p.

6. Semenov V.M., Ivannikova L.A., Kuznetsova T.V., Semenova N.A., Tulina A.S., Mineralizuemost' organicheskogo veshchestva i uglerodsekvestriruyushchaya emkost' pochv zonal'nogo ryada (Mineralizability of organic matter and carbon sequestrating capacity of zonal series soils), Pochvovedenie, 2008, No. 7, pp. 819–832.

7. Semenov V.M., Lebedeva T.N., Pautova N.B., Dispersnoe organicheskoe veshchestvo v neobrabatyvaemykh i pakhotnykh pochvakh (Dispersed organic matter in uncultivated and arable soils), Pochvovedenie, 2019, No. 4, pp. 440–450, DOI: 10.1134/S0032180X19040130.

8. Semenov V.M., Pautova N.B., Lebedeva T.N., Khromychkina D.P., Semenova N.A., Lopez de Gerenu V.O., Razlozhenie rastitel'nykh ostatkov i formirovanie aktivnogo organicheskogo veshchestva v pochve inkubatsionnykh eksperimentov (Decomposition of plant residues and the formation of active organic matter in the soil of incubation experiments), 2019, No. 10, pp. 1172–1184, DOI: 10.1134/S0032180X19100113.

9. Chichagova O.A., Radiouglerodnoe datirovanie gumusa pochv, Metod i ego primenenie v pochvovedenii i paleogeografii (Radiocarbon dating of soil humus, Method and its application in soil science and paleogeography), Moscow: Nauka, 1985, 143 p.

10. Amundson R., Biardeau L., Soil carbon sequestration is an elusive climate mitigation tool, PNAS, 2018, Vol. 115, No. 46, pp. 11652–11656, DOI: 10.1073/pnas.1815901115.

11. Baveye P.C., Bypass and hyperbole in soil research: Worrisome practices critically reviewed through examples, Eur. J. Soil Sci., 2020, Vol. 36, No. 1, pp. 1–20, DOI: 10.1111/ejss.12941.

12. Cambardella C.A., Elliott E.T., Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence, Soil Sci. Soc. Am. J., 1992, Vol. 56, No. 3, pp. 777–783, DOI: 10.2136/sssaj1992.03615995005600030017x.

13. Castellano M.J., Mueller K.E., Olk D.C., Sawyer J.E., Six J., Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept, Global Change Biology, 2015, Vol. 21, No. 9, pp. 3200–3209, DOI: 10.1111/gcb.12982.

14. Chung H., Grove J.H., Six J., Indications for Soil Carbon Saturation in a Temperate Agroecosystem, Soil Sci. Soc. Am. J., 2008, Vol. 72 (4), pp. 1132–1139, DOI: 10.2136/sssaj2007.0265.

15. Chung H., Ngo K.J., Plante A., Six J., Evidence for Carbon Saturation in a Highly Structured and Organic-Matter-Rich Soil, Soil Sci. Soc. Am. J., 2010, Vol. 74 (1), pp. 130–138, DOI: 10.2136/sssaj2009.0097.

16. Cotrufo M.F., Soong J.L., Horton A.J., Campbell E.E., Haddix M.L., Wall D.H., Parton W.J., Formation of soil organic matter via biochemical and physical pathways of litter mass loss, Nature Geoscience, 2015, Vol. 8, pp. 776–779, DOI: 10.1038/ngeo2520.

17. Cotrufo M.F., Wallenstein M.D., Boot C.M., Denef K., Paul E., The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biol., 2013, Vol. 19, No. 4, pp. 988–995, DOI: 10.1111/gcb.12113.

18. Hassink J., The capacity of soils to preserve organic C and N by their association with clay and silt particles, Plant and Soil., 1997, Vol. 191, pp. 77–87, DOI: 10.1023/A:1004213929699.

19. The “4 per 1000” Initiative. Soils for food security and climate, 2020, URL: https://www.4p1000.org/.

20. Hu Y., Zheng Q., Noll L., Zhang S., Wanek W., Direct measurement of the in situ decomposition of microbial-derived soil organic matter, Soil Biology and Biochemistry, 2020, Vol. 141, No. 107660, pp. 1–10, DOI: 10.1016/j.soilbio.2019.107660.

21. Kögel-Knabner I., Ekschmitt K., Flessa H., Guggenberger G., Matzner E., Marschner B., von Lützow M., An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology, J. Plant Nutr. and Soil Sci., 2008a, Vol. 171 (1), pp. 5–13, DOI: 10.1002/jpln.200700215.

22. Kögel-Knabner I., Guggenberger G., Kleber M., Kandeler E., Kalbitz K., Scheu S., Eusterhues K., Leinweber P., Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry, J. Plant Nutr. and Soil Sci., 2008b, Vol. 171 (1), pp. 61–82, DOI: 10.1002/jpln.200700048.

23. Körschens M., Soil – Humus – Climate. Practically relevant results of 79 long-term field experiments, Vortrag zum 2. Symposium “Wahrnehmung und Bewertung von Bödenin der Gesellschaft am 12 Oktober 2018 im UFZ Leipzig”, 2018, 12 p.

24. Kurganova I.N., Lopes de Gerenyu V.J., Six J., Kuzyakov Y., Carbon cost of collective farming collaps in Russia, Glob. Change Biol., 2014, Vol. 20(3), pp. 938–947, DOI: 10.1111/gcb.12379.

25. Lal R., Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security, BioScience, 2010, Vol. 60, pp. 708–721, DOI: 10.1525/bio.2010.60.9.8.

26. Lal R., Soil carbon sequestration to mitigate climate change, Geoderma, 2004, Vol. 123, pp. 1–22, DOI: 10.1016/j.geoderma.2004.01.032.

27. Meyer N., Bornemann L., Welp G., Schiedung H., Herbst M., Amelung W., Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow, Geoderma, 2017, Vol. 306, pp. 89–98, DOI: 10.1016/j.geoderma.2017.07.004.

28. Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.S., Cheng K. et al., Soil carbon 4 per mille, Geoderma, 2017, Vol. 292, pp. 59–86, DOI: 10.1016/j.geoderma.2017.01.002.

29. Sanderman J., Hengl T., Fiske G.J., Soil carbon debt of 12,000 years of human land use, PNAS, 2017, Vol. 114 (36), pp. 9575–9580, DOI: 10.1073/pnas.1706103114.

30. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant and Soil, 2002, Vol. 241, pp. 155–176, DOI: 10.1023/A:1016125726789.

31. Stockmann U., Adams M.A., Crawford, J.W. Field D.J., Henakaarchchi N., Jenkins M., Minasny B., McBratney A.B., de Courcelles V.R., Singh K., Wheeler I., Abbott L., Angers D.A., Baldock J., Bird M., Brookes P.C., Chenu C., Jastrow J.D., Lal R., Lehmann J., O’Donnell A.G., Parton W.J., Whitehead D., Zimmermann M., The knowns, known unknowns and unknowns of sequestration of soil organic carbon, Agriculture, Ecosystems and Environment, 2013, Vol. 164, pp. 80–99, DOI: 10.1016/j.agee.2012.10.001.

32. Von Lützow M., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review, Eur. J. Soil Sci., 2006, Vol. 57, pp. 426–445, DOI: 10.1111/j.1365-2389.2006.00809.x.

33. Wiesmeier M., Hübner R., Spörlein P., Geuß U., Hangen E., Reischl A., Schilling B., von Lützow M., Kögel-Knabner I., Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation, Global Change Biology, 2014, Vol. 20 (2), pp. 653–665, DOI: 10.1111/gcb.12384.

34. Wiesmeier M., Munro S., Barthold F., Steffens M., Schad P., Kögel-Knabner I., Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China, Global Change Biology, 2015, Vol. 21, No. 10, pp. 3836–3845, DOI: 10.1111/gcb.12957.

35.


Review

For citations:


Kogut B.M., Semenov V.M. Estimation of soil saturation with organic carbon. Dokuchaev Soil Bulletin. 2020;(102):103-124. (In Russ.) https://doi.org/10.19047/0136-1694-2020-102-103-124

Views: 1635


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)