Possibilities of using rheological parameters as physical indicators of soil structural changes
https://doi.org/10.19047/0136-1694-2020-103-108-148
Abstract
The rheological parameters of structured soddy-podzolic soils (Albic Glossic Retisols (Lomic, Cutanic)) and chernozems (Haplic Chernozems (Loamic, Pachic)) in their natural state and involved in agricultural use were studied by the oscillation amplitude sweep test. Shear resistance parameters of the studied soils (shear stress at the end of the linear viscoelasticity range – LVE-range tL, shear stress tF at the Crossover point and maximum shear stress tmax) were more informative and indicated pronounced differences between soil genetic horizons in contrast to viscoelasticity parameters (deformation γL at the end of the LVE-range and the integral zone Z) when comparing natural and arable soils. The agricultural land use resulted in decreased organic carbon content and, as a consequence, reduced viscoelasticity and shear resistance of the soils. At the same time, the higher bulk density of arable horizons and the redistribution of fine soil particles (physical clay) could explain maximal values of the rheological parameters in the upper arable horizons and their slight differentiation with depth. Further development in the application of the proposed and studied rheological parameters can give insight into the nature and strength evaluation of interparticle bonds, the soil processes under the impact of agricultural machinery, and can also be integrated into the system of physical indicators of soil structural changes.
About the Authors
V. V. KlyuevaRussian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
D. D. Khaydapova
Russian Federation
12 Bld. 1 Leninskie Gori, Moscow 119234
References
1. Markgraf W., Watts C.W., Whalley W.R., Hrkac T., Horn R., Influence of organic matter on rheological properties of soil, Applied Clay Science, 2012, Vol. 64, pp. 25–33.
2. Vorob'ev L.A. (Ed.), Teoriya i praktika khimicheskogo analiza pochv (Theory and practice of chemical analysis of soils), Moscow: GEOS, 2006, 400 p.
3. Bondarev A.G., Fizika i mekhanika pochv v reshenii sovremennykh problem pochvennogo plodorodiya (Soil physics and mechanics for solution modern problems of soil fertility), In: Pochvovedenie: aspekty, problemy, resheniya (Soil science: aspects, problems, solutions), Moscow: V.V. Dokuchaev Soil Science Institute Rossel'khozakademii, 2003, pp. 553–563.
4. Frid A.S., Kuznetsova I.V., Koroleva I.E., Bondarev A.G., Kogut B.M., Utkaeva V.F., Azovtseva N.A., Zonal'no-provintsial'nye normativy izmenenii agrokhimicheskikh, fiziko-khimicheskikh i fizicheskikh pokazatelei osnovnykh pakhotnykh pochv evropeiskoi territorii Rossii pri antropogennykh vozdeistviyakh (Zone standards of changes of agrochemical, physico-chemical and physical indicators of the main arable soils of the European territory of Russia under anthropogenic influences), Moscow: V.V. Dokuchaev Soil Science Institute, 2010, 176 p.
5. Markgraf W., Horn R., Rheological stiffness analysis of K+-treated and CaCO3-rich soils, Journal of Plant Nutrition and Soil Science, 2006, Vol. 169, pp. 411–419.
6. Bondarev A.G., Kuznetsova I.V., Problema degradatsii fizicheskikh svoistv pochv Rossiii i puti ee resheniya (The problem of degradation of physical properties of soils in Russia and solutions), Pochvovedenie, 1999, No. 9. pp. 1126–1131.
7. Khaidapova D.D., Chestnova V.V., Shein E.V., Milanovskii E.Yu., Reologicheskie svoistva chernozemov tipichnykh (Kurskaya oblast') pri razlichnom zemlepol'zovanii (Rheological properties of typical chernozems (Kursk oblast) under different land uses), Pochvovedenie, 2016, No. 8, pp. 955–963.
8. Markgraf W., Horn R., Scanning Electron Microscopy – Energy Dispersive Scan Analyses and Rheological Investigations of South-Brazilian Soils, Soil Science Society of America Journal, 2007, Vol. 71, No. 3, pp. 851–859.
9. Bondarev A.G. Kuznetsova I.V., Tikhonravov P.I., Utkaeva V.F., Nauchnye osnovy optimizatsii fizicheskikh uslovii plodorodiya pochv i povyshenie ikh ustoichivosti k degradatsii (Scientific basis for optimizing of physical conditions of soil fertility and increasing their resistance to degradation), In: Sovremennye problemy pochvovedeniya: Nauchnye trudy Pochvennogo instituta imeni V.V. Dokuchaeva (Modern problems of soil science: Scientific works of the V.V. Dokuchaev Soil Science Institute), Moscow: V.V. Dokuchaev Soil Science Institute Rossel'khozakademii, 2000, pp. 408–422.
10. Markgraf W., Moreno F., Horn R., Quantification of Microstructural Changes in Salorthidic Fluvaquents Using Rheological and Particle Charge Techniques, Vadose Zone Journal, 2012, Vol. 11, pp. 1–11.
11. Klyueva V.V., Reologicheskie svoistva pochv i ikh svyaz' s fizicheskimi i khimicheskimi svoistvami na primere dernovo-podzolistoi pochvy i chernozema tipichnogo: Dis. … kand. biol. nauk (Rheological properties of soddy-podzolic soils and typical chernozems and their relationships with physical and chemical properties. Cand. biol. sci.t hesis), Moscow: MGU, 2019, 142 p.
12. Khitrov N.B., Ponizovskii A.A., Rukovodstvo po laboratornym metodam issledovaniya ionno-solevogo sostava neitral'nykh i shchelochnykh mineral'nykh pochv (A guide to laboratory methods for studying of ion-salt composition of neutral and alkaline mineral soils), Moscow: VASKhNIL, V.V. Dokuchaev Soil Science Institute, 1990, 236 p.
13. Klyueva V.V., Khaydapova D.D., Rheological properties of natural and disturbed structure samples of soddy-podzolic and agro soddy-podzolic soil, Dokuchaev Soil Bulletin, 2017, No. 89, pp. 21–35, DOI: 10.19047/0136-1694-2017-89-21-35.
14. Mezger T.G., The Rheology Handbook. For users of rotational and oscillatory rheometers, Hanover: Vincentz Network, 2014, 4th edition, 434 p.
15. Khitrov N.B., Khaidapova D.D., Vyazkouprugoe povedenie vertikovogo solontsa Kamennoi Stepi (Viscoelastic Behavior of Vertic Solonetz in the Kamennaya Steppe), Pochvovedenie, 2019, No. 7., pp. 843–858.
16. Kuznetsova I.V., Skvortsova E.B., Teoreticheskie i metodicheskie osnovy predotvrashcheniya fizicheskoi degradatsii pochv (Theoretical and methodological basis of preventing of physical soil degradation), In: Nauchnye osnovy predotvrashcheniya degradatsii pochv (zemel') sel'skokhozyaistvennykh ugodii Rossii i formirovaniya sistem vosproizvodstva ikh plodorodiya v adaptivno-landshaftnom zemledelii: Vol. 1. Teoreticheskie i metodicheskie osnovy predotvrashcheniya degradatsii pochv (zemel') sel'skokhozyaistvennykh ugodii. Kollektivnaya monografiya (Scientific basis of preventing of soil (land) degradation of agricultural lands in Russia and formation of systems for the reproduction of their fertility in adaptive landscape agriculture: Vol. 1. Theoretical and methodological basis of preventing soils (lands) degradation of agricultural land. Collective monograph), Moscow: V.V. Dokuchaev Soil Science Institute Rossel'khozakademii, 2013. pp. 50–133.
17. Mitchell J.K., Soga K., Fundamentals of soil behavior, Hoboken: John Wiley & Sons, 2005, 3rd edition, 577 p.
18. Kholopov Yu.V., Khaidapova D.D., Lapteva E.M., Reologicheskie svoistva severo-taezhnykh avtomorfnykh i polugidromorfnykh kriometamorficheskikh pochv Evropeiskogo severo-vostoka Rossii (Respublika Komi) (Rheological Properties of Automorphic and Semihydromorphic Cryometamorphic Northern Taiga Soils in Northeastern European Russia (Komi Republic)), Pochvovedenie, 2018, No. 4., pp. 439–450.
19. Sapozhnikov P.M., Degradatsiya fizicheskikh svoistv pochv pri antropogennykh vozdeistviyakh (Degradation of physical properties of soils under anthropogenic influence), Pochvovedenie, 1994, No. 11, pp. 60–66.
20. Pértile P., Reichert J.M., Gubiani P.I., Holthusen D., da Costa A., Rheological parameters as affected by water tension in subtropical soils, Revista Brasileira de Ciencia do Solo, 2016, Vol. 40, pp. 2–14.
21. Shein E.V., Kurs fiziki pochv (Soil Physics), Moscow: Izd-vo Mosk. Un-ta, 2005, 432 p.
22. Vorob'ev L.A. (Ed.), Teoriya i praktika khimicheskogo analiza pochv (Theory and practice of chemical analysis of soils), Moscow: GEOS, 2006, 400 p.
23. Pértile P., Holthusen D., Gubiani P.I., Reichert J.M., Microstructural strength of four subtropical soils evaluated by rheometry: properties, difficulties and opportunities, Scientia Agricola, 2018, Vol. 75, No. 2, pp. 154–162.
24. Shein E.V., Milanovskii E.Yu., Khaidapova D.D., Pozdnyakov A.I., Tyugai Z., Pochatkova T.N., Dembovetskii A.V., Praktikum po fizike tverdoi fazy pochv (Physics of Solid phase: Study Guide), Moscow: Buki Vedi, 2017, 119 p.
25. Frid A.S., Kuznetsova I.V., Koroleva I.E., Bondarev A.G., Kogut B.M., Utkaeva V.F., Azovtseva N.A., Zonal'no-provintsial'nye normativy izmenenii agrokhimicheskikh, fiziko-khimicheskikh i fizicheskikh pokazatelei osnovnykh pakhotnykh pochv evropeiskoi territorii Rossii pri antropogennykh vozdeistviyakh (Zone standards of changes of agrochemical, physico-chemical and physical indicators of the main arable soils of the European territory of Russia under anthropogenic influences), Moscow: V.V. Dokuchaev Soil Science Institute, 2010, 176 p.
26. Abbireddy C.O.R., Clayton C.R.I., The impact of particle form on the packing and shear behaviour of some granular materials: an experimental study, Granular Matter, 2015. Vol. 17, No. 4, pp. 427–438.
27. Phogat V.K., Tomar V.S., Dahiya R., Soil Physical Properties, Soil Science: An Introduction, Indian Society of Soil Science, 2016, First edition. pp. 135–171.
28. Khaidapova D.D., Chestnova V.V., Shein E.V., Milanovskii E.Yu., Reologicheskie svoistva chernozemov tipichnykh (Kurskaya oblast') pri razlichnom zemlepol'zovanii (Rheological properties of typical chernozems (Kursk oblast) under different land uses), Pochvovedenie, 2016, No. 8, pp. 955–963.
29. Armenise E., Redmile-Gordon M., Stellacci A.M., Ciccarese A., Rubino P., Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment, Soil Tillage Research, 2013, Vol. 130, pp. 91–98.
30. Reynolds D., Bowman B.T., Drury C.F., Tan C.S., Lu X., Indicators of good soil physical quality : density and storage parameters, Geoderma, 2002, Vol. 110, pp. 131–146.
31. Khitrov N.B., Ponizovskii A.A., Rukovodstvo po laboratornym metodam issledovaniya ionno-solevogo sostava neitral'nykh i shchelochnykh mineral'nykh pochv (A guide to laboratory methods for studying of ion-salt composition of neutral and alkaline mineral soils), Moscow: VASKhNIL, V.V. Dokuchaev Soil Science Institute, 1990, 236 p.
32. Barré P., Hallett P.D., Rheological stabilization of wet soils by model root and fungal exudates depends on clay mineralogy, European Journal of Soil Science, 2009, Vol. 60, pp. 525–538.
33. Reynolds W.D., Drury C.F., Yang X.M., Tan C.S., Optimal soil physical quality inferred through structural regression and parameter interactions, Geoderma, 2008, Vol. 146, pp. 466–474.
34. Khitrov N.B., Khaidapova D.D., Vyazkouprugoe povedenie vertikovogo solontsa Kamennoi Stepi (Viscoelastic Behavior of Vertic Solonetz in the Kamennaya Steppe), Pochvovedenie, 2019, No. 7., pp. 843–858.
35. Reynolds W.D., Drury C.F., Tan C.S., Fox C.A., Yang, X.M., Use of indicators and pore volume-function characteristics to quantify soil physical quality, Geoderma, 2009, Vol. 152, pp. 252–263.
36. Bronick C.J., Lal R., Soil structure and management: A review, Geoderma, 2005, Vol. 124. pp. 3–22.
37. Kholopov Yu.V., Khaidapova D.D., Lapteva E.M., Reologicheskie svoistva severo-taezhnykh avtomorfnykh i polugidromorfnykh kriometamorficheskikh pochv Evropeiskogo severo-vostoka Rossii (Respublika Komi) (Rheological Properties of Automorphic and Semihydromorphic Cryometamorphic Northern Taiga Soils in Northeastern European Russia (Komi Republic)), Pochvovedenie, 2018, No. 4., pp. 439–450.
38. Schoenholtz S.H., Miegroet H., van Burger J.A., A review of chemical and physical properties as indicators of forest soil quality : challenges and opportunities, Forest and Ecology Management, 2000, Vol. 138, pp. 335–356.
39. Buchmann C., Bentz J., Schaumann G.E., Intrinsic and model polymer hydrogel–induced soil structural stability of a silty sand soil as affected by soil moisture dynamics, Soil Tillage Research, 2015, Vol. 154, pp. 22–33.
40. Shein E.V., Kurs fiziki pochv (Soil Physics), Moscow: Izd-vo Mosk. Un-ta, 2005, 432 p.
41. Shukla M.K., Lal R., Ebinger M., Determining soil quality indicators by factor analysis, Soil Tillage Research, 2006, Vol. 87, pp. 194–204.
42. Bünemann E.K., Bongiorno G., Bai Z., Creamer R.E., Deyn G.D., Goedу R.D., Fleskens L., Geissen V., Kuyper T.W., Mäder P., Pulleman M., Sukkel W., Willem J., Groenigen V., Brussaard L., Soil quality – A critical review, Soil Biology and Biochemistry, 2018, Vol. 120, pp. 105–125.
43. Shein E.V., Milanovskii E.Yu., Khaidapova D.D., Pozdnyakov A.I., Tyugai Z., Pochatkova T.N., Dembovetskii A.V., Praktikum po fizike tverdoi fazy pochv (Physics of Solid phase: Study Guide), Moscow: Buki Vedi, 2017, 119 p.
44. Six J., Bossuyt H., Degryze S., Denef K.A., History of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics, Soil Tillage Research, 2004, Vol. 79, pp. 7–31.
45. Abbireddy C.O.R., Clayton C.R.I., The impact of particle form on the packing and shear behaviour of some granular materials: an experimental study, Granular Matter, 2015. Vol. 17, No. 4, pp. 427–438.
46. Dexter A.R., Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth, Geoderma, 2004, Vol. 120, pp. 201–214.
47. Stoppe N., Horn R., Microstructural strength of tidal soils – A rheometric approach to develop pedotransfer functions, Journal of Hydrology and Hydromechanics, 2018, Vol. 66, No. 1, pp. 87–96.
48. Gliński J., Horabik J., Lipiec J. (Eds), Encyclopedia of agrophysics, Dordrecht: Springer, 2011, 1028 p.
49. Armenise E., Redmile-Gordon M., Stellacci A.M., Ciccarese A., Rubino P., Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment, Soil Tillage Research, 2013, Vol. 130, pp. 91–98.
50. Terzaghi K., Peck R.B., Nesri G., Soil Mechanics in Engineering Practice, New York – Chichester – Brisbane – Toronto – Singapore: John Wiley & Sons, 1996, 3rd edition, 417 p.
51. Food security and soil quality, eds. R. Lal and B.A. Stewart. Boca Raton, USA: Taylor and Francis Group, 2010. 407 p.
52. Barré P., Hallett P.D., Rheological stabilization of wet soils by model root and fungal exudates depends on clay mineralogy, European Journal of Soil Science, 2009, Vol. 60, pp. 525–538.
53. Ye C., Guo Z., Cai C.,Wang J., Deng J., Effect of water content, bulk density, and aggregate size on mechanical characteristics of Aquults soil blocks and aggregates from subtropical China, Journal of Soils and Sediments, 2016, Vol. 17, No. 1, pp. 210–219.
54. Bronick C.J., Lal R., Soil structure and management: A review, Geoderma, 2005, Vol. 124. pp. 3–22.
55. Holthusen D., Pértile P., Reichert J.M., Horn R., Controlled vertical stress in a modified amplitude sweep test (rheometry) for the determination of soil microstructure stability under transient stresses, Geoderma, 2017, Vol. 295, pp. 129–141.
56. Zhang H.Q., Hartge K.H., Cohesion in unsaturated sandy soils and the influence of organic matter, Soil Technology, 1990, No. 3, pp. 311–326.
57. Buchmann C., Bentz J., Schaumann G.E., Intrinsic and model polymer hydrogel–induced soil structural stability of a silty sand soil as affected by soil moisture dynamics, Soil Tillage Research, 2015, Vol. 154, pp. 22–33.
58. Holthusen D., Pértile P., Reichert J. M., Horn R., Viscoelasticity and shear resistance at the microscale of naturally structured and homogenized subtropical soils under undefined and defined normal stress conditions, Soil Tillage Research, 2019, Vol. 191, pp. 282–293.
59.
60. Bünemann E.K., Bongiorno G., Bai Z., Creamer R.E., Deyn G.D., Goedу R.D., Fleskens L., Geissen V., Kuyper T.W., Mäder P., Pulleman M., Sukkel W., Willem J., Groenigen V., Brussaard L., Soil quality – A critical review, Soil Biology and Biochemistry, 2018, Vol. 120, pp. 105–125.
61. Horn R., Holthusen D., Dörner J., Mordhorst A., Fleige H., Scale-dependent soil strengthening processes – What do we need to know and where to head for a sustainable environment? Soil Tillage Research, 2019, Vol. 195.
62. Dexter A.R., Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth, Geoderma, 2004, Vol. 120, pp. 201–214.
63. Kock I., Huhn K., Influence of particle shape on the frictional strength of sediments – A numerical case study, Sedimentary Geology, 2007, Vol. 196, No. 1–4, pp. 217–233.
64. Lal R., Shukla M.K, Principles of soil physics, New York, Basel: Marcel Dekker, 2004, 682 p.
65. Gliński J., Horabik J., Lipiec J. (Eds), Encyclopedia of agrophysics, Dordrecht: Springer, 2011, 1028 p.
66. Food security and soil quality, eds. R. Lal and B.A. Stewart. Boca Raton, USA: Taylor and Francis Group, 2010. 407 p.
67. Markgraf W., Watts C.W., Whalley W.R., Hrkac T., Horn R., Influence of organic matter on rheological properties of soil, Applied Clay Science, 2012, Vol. 64, pp. 25–33.
68. Holthusen D., Pértile P., Reichert J.M., Horn R., Controlled vertical stress in a modified amplitude sweep test (rheometry) for the determination of soil microstructure stability under transient stresses, Geoderma, 2017, Vol. 295, pp. 129–141.
69. Markgraf W., Horn R., Rheological stiffness analysis of K+-treated and CaCO3-rich soils, Journal of Plant Nutrition and Soil Science, 2006, Vol. 169, pp. 411–419.
70. Holthusen D., Pértile P., Reichert J. M., Horn R., Viscoelasticity and shear resistance at the microscale of naturally structured and homogenized subtropical soils under undefined and defined normal stress conditions, Soil Tillage Research, 2019, Vol. 191, pp. 282–293.
71. Markgraf W., Horn R., Scanning Electron Microscopy – Energy Dispersive Scan Analyses and Rheological Investigations of South-Brazilian Soils, Soil Science Society of America Journal, 2007, Vol. 71, No. 3, pp. 851–859.
72. Horn R., Holthusen D., Dörner J., Mordhorst A., Fleige H., Scale-dependent soil strengthening processes – What do we need to know and where to head for a sustainable environment? Soil Tillage Research, 2019, Vol. 195.
73. Markgraf W., Moreno F., Horn R., Quantification of Microstructural Changes in Salorthidic Fluvaquents Using Rheological and Particle Charge Techniques, Vadose Zone Journal, 2012, Vol. 11, pp. 1–11.
74. Kock I., Huhn K., Influence of particle shape on the frictional strength of sediments – A numerical case study, Sedimentary Geology, 2007, Vol. 196, No. 1–4, pp. 217–233.
75. Mezger T.G., The Rheology Handbook. For users of rotational and oscillatory rheometers, Hanover: Vincentz Network, 2014, 4th edition, 434 p.
76. Lal R., Shukla M.K, Principles of soil physics, New York, Basel: Marcel Dekker, 2004, 682 p.
77. Mitchell J.K., Soga K., Fundamentals of soil behavior, Hoboken: John Wiley & Sons, 2005, 3rd edition, 577 p.
78. Markgraf W., Watts C.W., Whalley W.R., Hrkac T., Horn R., Influence of organic matter on rheological properties of soil, Applied Clay Science, 2012, Vol. 64, pp. 25–33.
79. Pértile P., Reichert J.M., Gubiani P.I., Holthusen D., da Costa A., Rheological parameters as affected by water tension in subtropical soils, Revista Brasileira de Ciencia do Solo, 2016, Vol. 40, pp. 2–14.
80. Markgraf W., Horn R., Rheological stiffness analysis of K+-treated and CaCO3-rich soils, Journal of Plant Nutrition and Soil Science, 2006, Vol. 169, pp. 411–419.
81. Pértile P., Holthusen D., Gubiani P.I., Reichert J.M., Microstructural strength of four subtropical soils evaluated by rheometry: properties, difficulties and opportunities, Scientia Agricola, 2018, Vol. 75, No. 2, pp. 154–162.
82. Markgraf W., Horn R., Scanning Electron Microscopy – Energy Dispersive Scan Analyses and Rheological Investigations of South-Brazilian Soils, Soil Science Society of America Journal, 2007, Vol. 71, No. 3, pp. 851–859.
83. Phogat V.K., Tomar V.S., Dahiya R., Soil Physical Properties, Soil Science: An Introduction, Indian Society of Soil Science, 2016, First edition. pp. 135–171.
84. Markgraf W., Moreno F., Horn R., Quantification of Microstructural Changes in Salorthidic Fluvaquents Using Rheological and Particle Charge Techniques, Vadose Zone Journal, 2012, Vol. 11, pp. 1–11.
85. Reynolds D., Bowman B.T., Drury C.F., Tan C.S., Lu X., Indicators of good soil physical quality : density and storage parameters, Geoderma, 2002, Vol. 110, pp. 131–146.
86. Mezger T.G., The Rheology Handbook. For users of rotational and oscillatory rheometers, Hanover: Vincentz Network, 2014, 4th edition, 434 p.
87. Reynolds W.D., Drury C.F., Yang X.M., Tan C.S., Optimal soil physical quality inferred through structural regression and parameter interactions, Geoderma, 2008, Vol. 146, pp. 466–474.
88. Mitchell J.K., Soga K., Fundamentals of soil behavior, Hoboken: John Wiley & Sons, 2005, 3rd edition, 577 p.
89. Reynolds W.D., Drury C.F., Tan C.S., Fox C.A., Yang, X.M., Use of indicators and pore volume-function characteristics to quantify soil physical quality, Geoderma, 2009, Vol. 152, pp. 252–263.
90. Pértile P., Reichert J.M., Gubiani P.I., Holthusen D., da Costa A., Rheological parameters as affected by water tension in subtropical soils, Revista Brasileira de Ciencia do Solo, 2016, Vol. 40, pp. 2–14.
91. Schoenholtz S.H., Miegroet H., van Burger J.A., A review of chemical and physical properties as indicators of forest soil quality : challenges and opportunities, Forest and Ecology Management, 2000, Vol. 138, pp. 335–356.
92. Pértile P., Holthusen D., Gubiani P.I., Reichert J.M., Microstructural strength of four subtropical soils evaluated by rheometry: properties, difficulties and opportunities, Scientia Agricola, 2018, Vol. 75, No. 2, pp. 154–162.
93. Shukla M.K., Lal R., Ebinger M., Determining soil quality indicators by factor analysis, Soil Tillage Research, 2006, Vol. 87, pp. 194–204.
94. Phogat V.K., Tomar V.S., Dahiya R., Soil Physical Properties, Soil Science: An Introduction, Indian Society of Soil Science, 2016, First edition. pp. 135–171.
95. Six J., Bossuyt H., Degryze S., Denef K.A., History of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics, Soil Tillage Research, 2004, Vol. 79, pp. 7–31.
96. Reynolds D., Bowman B.T., Drury C.F., Tan C.S., Lu X., Indicators of good soil physical quality : density and storage parameters, Geoderma, 2002, Vol. 110, pp. 131–146.
97. Stoppe N., Horn R., Microstructural strength of tidal soils – A rheometric approach to develop pedotransfer functions, Journal of Hydrology and Hydromechanics, 2018, Vol. 66, No. 1, pp. 87–96.
98. Reynolds W.D., Drury C.F., Yang X.M., Tan C.S., Optimal soil physical quality inferred through structural regression and parameter interactions, Geoderma, 2008, Vol. 146, pp. 466–474.
99. Terzaghi K., Peck R.B., Nesri G., Soil Mechanics in Engineering Practice, New York – Chichester – Brisbane – Toronto – Singapore: John Wiley & Sons, 1996, 3rd edition, 417 p.
100. Reynolds W.D., Drury C.F., Tan C.S., Fox C.A., Yang, X.M., Use of indicators and pore volume-function characteristics to quantify soil physical quality, Geoderma, 2009, Vol. 152, pp. 252–263.
101. Ye C., Guo Z., Cai C.,Wang J., Deng J., Effect of water content, bulk density, and aggregate size on mechanical characteristics of Aquults soil blocks and aggregates from subtropical China, Journal of Soils and Sediments, 2016, Vol. 17, No. 1, pp. 210–219.
102. Schoenholtz S.H., Miegroet H., van Burger J.A., A review of chemical and physical properties as indicators of forest soil quality : challenges and opportunities, Forest and Ecology Management, 2000, Vol. 138, pp. 335–356.
103. Zhang H.Q., Hartge K.H., Cohesion in unsaturated sandy soils and the influence of organic matter, Soil Technology, 1990, No. 3, pp. 311–326.
104. Shukla M.K., Lal R., Ebinger M., Determining soil quality indicators by factor analysis, Soil Tillage Research, 2006, Vol. 87, pp. 194–204.
105.
106. Six J., Bossuyt H., Degryze S., Denef K.A., History of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics, Soil Tillage Research, 2004, Vol. 79, pp. 7–31.
107. Stoppe N., Horn R., Microstructural strength of tidal soils – A rheometric approach to develop pedotransfer functions, Journal of Hydrology and Hydromechanics, 2018, Vol. 66, No. 1, pp. 87–96.
108. Terzaghi K., Peck R.B., Nesri G., Soil Mechanics in Engineering Practice, New York – Chichester – Brisbane – Toronto – Singapore: John Wiley & Sons, 1996, 3rd edition, 417 p.
109. Ye C., Guo Z., Cai C.,Wang J., Deng J., Effect of water content, bulk density, and aggregate size on mechanical characteristics of Aquults soil blocks and aggregates from subtropical China, Journal of Soils and Sediments, 2016, Vol. 17, No. 1, pp. 210–219.
110. Zhang H.Q., Hartge K.H., Cohesion in unsaturated sandy soils and the influence of organic matter, Soil Technology, 1990, No. 3, pp. 311–326.
111.
Supplementary files
Review
For citations:
Klyueva V.V., Khaydapova D.D. Possibilities of using rheological parameters as physical indicators of soil structural changes. Dokuchaev Soil Bulletin. 2020;(103):108-148. (In Russ.) https://doi.org/10.19047/0136-1694-2020-103-108-148