The yield values of densimetric fractions from typical chernozems of different land use types
https://doi.org/10.19047/0136-1694-2020-103-85-107
Abstract
One of the most justified and applied approaches to isolating pools of soil organic matter is fractionation in heavy liquids. The main problem with this approach is rather large losses in the separation of fractions at the stage of washing fractions from heavy liquids. The paper presents a densimetric fractionation protocol that can significantly reduce these losses. It is suggested to use 0.001 M HCl for washing. This approach, in comparison with distilled water, allows reducing losses of weight from 15 to 5% and of carbon from 7.5 to 2.5%. The paper provides a detailed protocol, used by the Laboratory of Soil Biochemistry of V.V. Dokuchaev Soil Science Institute, to isolate four densimetric fractions using sodium polytungstate solutions: free and occluded SOM with a density of <1.6 g/cm3, occluded SOM – of 1.6–2.0 g/cm3, and a mineral residue with a density >2.0 g/cm3. In the work we used samples of typical chernozems of different land use types. It was shown that the processes of soil restoration and degradation significantly affect the content of light occluded soil organic matter.
Keywords
About the Authors
Yu. R. FarkhodovRussian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
N. V. Yaroslavtseva
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
M. A. Yashin
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
S. F. Khokhlov
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
B. S. Iliyn
Russian Federation
10 p. Cheremushki, Kursk region 305526
V. I. Lazarev
Russian Federation
10 p. Cheremushki, Kursk region 305526
V. A. Kholodov
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
References
1. Kholodov V.A., Yaroslavceva N.V., Farkhodov Y.R., Yashin M.A., Lasarev V.I., Ilin B.S., Fillipova O.I., Volikov A.B., Ivanov A.L., Optical characteristics of extractable organic matter fractions typical chernozems of long-term field experiments, Eurasian Soil Science, 2020, No. 6, pp. 691–702, DOI: 10.1134/S1064229320060058.
2. Kholodov V.A., Yaroslavceva N.V., Farkhodov Y.R., Yashin M.A., Lasarev V.I., Ilin B.S., Fillipova O.I., Volikov A.B., Ivanov A.L., Optical characteristics of extractable organic matter fractions typical chernozems of long-term field experiments, Eurasian Soil Science, 2020, No. 6, pp. 691–702, DOI: 10.1134/S1064229320060058.
3. Kholodov V.A., Yaroslavceva N.V., Farkhodov Y.R., Yashin M.A., Lasarev V.I., Ilin B.S., Fillipova O.I., Volikov A.B., Ivanov A.L., Optical characteristics of extractable organic matter fractions typical chernozems of long-term field experiments, Eurasian Soil Science, 2020, No. 6, pp. 691–702, DOI: 10.1134/S1064229320060058.
4. Torresan M.E., The use of sodium polytungstate in heavy mineral separations, Menlo Park, California, 1987, 18 p.
5. Kholodov V.A., Yaroslavtseva N.V., Farkhodov Y.R., Belobrov V.P., Yudin S.A., Aydiev A.Y., Lazarev V.I., Frid A.S., Changes in the Ratio of Aggregate Fractions in Humus Horizons of Chernozems in Response to the Type of Their Use, Eurasian Soil Science, 2019, Vol. 52, No. 2, pp. 162–170, DOI: 10.1134/S1064229319020066.
6. Kholodov V.A., Yaroslavtseva N.V., Lazarev V.I., Frid A.S., Interpretation of data on the aggregate composition of typical chernozems under different land use by cluster and principal component analyses, Eurasian Soil Science, 2016, Vol. 49, No. 9, pp. 1026–1032, DOI: 10.1134/S1064229316090076.
7. Kholodov V.A., Yaroslavtseva N.V., Lazarev V.I., Frid A.S., Interpretation of data on the aggregate composition of typical chernozems under different land use by cluster and principal component analyses, Eurasian Soil Science, 2016, Vol. 49, No. 9, pp. 1026–1032, DOI: 10.1134/S1064229316090076.
8. Aydinyan R.Kh., Kratkaya instruktsiya. Izvlecheniye ila iz pochvy (Brief instructions. Removing silt from the soil), Moscow: Giprovodkhoz, 1960, 10 p.
9. Kholodov V.A., Yaroslavtseva N.V., Lazarev V.I., Frid A.S., Interpretation of data on the aggregate composition of typical chernozems under different land use by cluster and principal component analyses, Eurasian Soil Science, 2016, Vol. 49, No. 9, pp. 1026–1032, DOI: 10.1134/S1064229316090076.
10. Viret F., Grand S., Combined Size and Density Fractionation of Soils for Investigations of Organo-Mineral Interactions, Jove-Journal of Visualized Experiments, 2019, No. 144, URL: https://www.jove.com/video/58927/combined-size-density-fractionation-soils-for-investigations-organo.
11. Kholodov V.A., Yaroslavceva N.V., Farkhodov Y.R., Yashin M.A., Lasarev V.I., Ilin B.S., Fillipova O.I., Volikov A.B., Ivanov A.L., Optical characteristics of extractable organic matter fractions typical chernozems of long-term field experiments, Eurasian Soil Science, 2020, No. 6, pp. 691–702, DOI: 10.1134/S1064229320060058.
12. Shaimukhametov M.Sh., Voronina K.A., Method of fractionation of organo-clay complexes by means of laboratory centrifuges, Pochvovedenie, 1972, No. 8, pp. 134–138.
13. Kogut B.M., Sysuev S.A., Kholodov V.A., Water stability and labile humic substances of typical chernozems under different land uses, Eurasian Soil Science, 2012, Vol. 45, No. 5, pp. 496–502. DOI: 10.1134/S1064229312050055.
14. Shaimukhametov M.Sh., Voronina K.A., Method of fractionation of organo-clay complexes by means of laboratory centrifuges, Pochvovedenie, 1972, No. 8, pp. 134–138.
15. Shaimukhametov M.Sh., Voronina K.A., Method of fractionation of organo-clay complexes by means of laboratory centrifuges, Pochvovedenie, 1972, No. 8, pp. 134–138.
16. von Lutzow M., Kogel-Knabner I., Ekschmittb K., Flessa H., Guggenberger G., Matzner E., Marschner B., SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biology and Biochemistry, 2007, Vol. 39, No. 9, pp. 2183–2207, DOI: 10.1016/j.soilbio.2007.03.007.
17. Kholodov V.A., Yaroslavtseva N.V., Lazarev V.I., Frid A.S., Interpretation of data on the aggregate composition of typical chernozems under different land use by cluster and principal component analyses, Eurasian Soil Science, 2016, Vol. 49, No. 9, pp. 1026–1032, DOI: 10.1134/S1064229316090076.
18. Shein E.V., Karpachevskii L.O., Teorii i metody fiziki pochv (Theories and methods of soil physics), Moscow: Grif and K, 2007, 616 p.
19. Shein E.V., Karpachevskii L.O., Teorii i metody fiziki pochv (Theories and methods of soil physics), Moscow: Grif and K, 2007, 616 p.
20. Kogut B.M., Frid A.S., Masjutenko N.P., Kuvaeva J.V., Romanenkov V.A., Lazarev V.I., Kholodov V.A., Dynamics of Organic Carbon in Typical Chernozem under Condition of a Long-Term Experiment; Dinamika soderzhaniya organicheskogo ugleroda v tipichnom chernozeme, Agrokhimiya, 2011, No. 12, pp. 37–44.
21. Shaimukhametov M.Sh., Voronina K.A., Method of fractionation of organo-clay complexes by means of laboratory centrifuges, Pochvovedenie, 1972, No. 8, pp. 134–138.
22. von Luetzow M., Koegel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, European Journal of Soil Science, 2006, Vol. 57, No. 4, pp. 426–445, DOI: 10.1111/j.1365-2389.2006.00809.x.
23. Shein E.V., Karpachevskii L.O., Teorii i metody fiziki pochv (Theories and methods of soil physics), Moscow: Grif and K, 2007, 616 p.
24. Cerli C., Celi L., Kalbitz K., Guggenberger G., Kaiser K., Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level, Geoderma, 2012, Vol. 170, pp. 403–416, DOI: 10.1016/j.geoderma.2011.10.009.
25. Sokolova T.A., Trofimov S.Ya., Sorbtsionnyye svoystva pochv. Adsorbtsiya. Kationnyy obmen (Sorption properties of soils. Adsorption. Cation exchange), Tula: Grif i K, 2009, 174 p.
26. Cerli C., Celi L., Kalbitz K., Guggenberger G., Kaiser K., Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level, Geoderma, 2012, Vol. 170, pp. 403–416, DOI: 10.1016/j.geoderma.2011.10.009.
27. Shein E.V., Karpachevskii L.O., Teorii i metody fiziki pochv (Theories and methods of soil physics), Moscow: Grif and K, 2007, 616 p.
28. Cerli C., Celi L., Kalbitz K., Guggenberger G., Kaiser K., Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level, Geoderma, 2012, Vol. 170, pp. 403–416, DOI: 10.1016/j.geoderma.2011.10.009.
29. Wagai R., Mayer L.M., Kitayama K., Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review, Soil Science and Plant Nutrition, 2009, Vol. 55, No. 1, pp. 13–25, DOI: 10.1111/j.1747-0765.2008.00356.x.
30. Eckmeier E., Gerlach R., Gehrt E., Schmidt M.W.I., Pedogenesis of Chernozems in Central Europe – A review, Geoderma, 2007, Vol. 139, No. 3–4, pp. 288–299, DOI: 10.1016/j.geoderma.2007.01.009.
31. Eckmeier E., Gerlach R., Gehrt E., Schmidt M.W.I., Pedogenesis of Chernozems in Central Europe – A review, Geoderma, 2007, Vol. 139, No. 3–4, pp. 288–299, DOI: 10.1016/j.geoderma.2007.01.009.
32. Helfrich M., Ludwig B., Buurman P., Flessa H., Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state C-13 NMR spectroscopy, Geoderma, 2006, Vol. 136, No. 1–2, pp. 331–341, DOI: 10.1016/j.geoderma.2006.03.048.
33. Eckmeier E., Gerlach R., Gehrt E., Schmidt M.W.I., Pedogenesis of Chernozems in Central Europe – A review, Geoderma, 2007, Vol. 139, No. 3–4, pp. 288–299, DOI: 10.1016/j.geoderma.2007.01.009.
34. The original non-toxic heavy liquid. Sodium Polytungstate. URL: www.sometu.de.
35. Travnikova L.S., Artem'eva Z.S., Sorokina N.P., Distribution of the particle-size fractions in soddy-podzolic soils subjected to sheet erosion, Eurasian Soil Science, 2010, Vol. 43, No. 4, pp. 459–467, DOI: 10.1134/S1064229310040137.
36. Cerli C., Celi L., Kalbitz K., Guggenberger G., Kaiser K., Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level, Geoderma, 2012, Vol. 170, pp. 403–416, DOI: 10.1016/j.geoderma.2011.10.009.
37. Helfrich M., Ludwig B., Buurman P., Flessa H., Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state C-13 NMR spectroscopy, Geoderma, 2006, Vol. 136, No. 1–2, pp. 331–341, DOI: 10.1016/j.geoderma.2006.03.048.
38. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome.
39. Eckmeier E., Gerlach R., Gehrt E., Schmidt M.W.I., Pedogenesis of Chernozems in Central Europe – A review, Geoderma, 2007, Vol. 139, No. 3–4, pp. 288–299, DOI: 10.1016/j.geoderma.2007.01.009.
40.
41. Helfrich M., Ludwig B., Buurman P., Flessa H., Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state C-13 NMR spectroscopy, Geoderma, 2006, Vol. 136, No. 1–2, pp. 331–341, DOI: 10.1016/j.geoderma.2006.03.048.
42. Kharitonova G.V., Shein E.V., Shesterkin V.P., Yudina A.V., Dembovetsky A.V., Ostrouhov A.V., Berdnikov N.V., Yakubovskaya A.Y. The texture of Bureya bottom sediments in the area of the Nizhne-Bureiskaya HPP, 2017, Moscow Univ. Soil Sci. Bull., No. 72, pp. 21–30, DOI: 10.3103/S0147687417010033.
43. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome.
44. Helfrich M., Ludwig B., Buurman P., Flessa H., Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state C-13 NMR spectroscopy, Geoderma, 2006, Vol. 136, No. 1–2, pp. 331–341, DOI: 10.1016/j.geoderma.2006.03.048.
45. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome.
46. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy, Australian Journal of Soil Research, 1994, Vol. 32, No. 2, pp. 285–309, DOI: 10.1071/SR9940285.
47. Kholodov V.A., Yaroslavtseva N.V., Farkhodov Y.R., Belobrov V.P., Yudin S.A., Aydiev A.Y., Lazarev V.I., Frid A.S., Changes in the Ratio of Aggregate Fractions in Humus Horizons of Chernozems in Response to the Type of Their Use, Eurasian Soil Science, 2019, Vol. 52, No. 2, pp. 162–170, DOI: 10.1134/S1064229319020066.
48. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy, Australian Journal of Soil Research, 1994, Vol. 32, No. 2, pp. 285–309, DOI: 10.1071/SR9940285.
49. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome.
50. Kholodov V.A., Yaroslavceva N.V., Farkhodov Y.R., Yashin M.A., Lasarev V.I., Ilin B.S., Fillipova O.I., Volikov A.B., Ivanov A.L., Optical characteristics of extractable organic matter fractions typical chernozems of long-term field experiments, Eurasian Soil Science, 2020, No. 6, pp. 691–702, DOI: 10.1134/S1064229320060058.
51. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy, Australian Journal of Soil Research, 1994, Vol. 32, No. 2, pp. 285–309, DOI: 10.1071/SR9940285.
52. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Soil structure and carbon cycling, Australian Journal of Soil Research, 1994, Vol. 32, No. 5, pp. 1043–1068, DOI: 10.1071/SR9941043.
53. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Soil structure and carbon cycling, Australian Journal of Soil Research, 1994, Vol. 32, No. 5, pp. 1043–1068, DOI: 10.1071/SR9941043.
54. Kholodov V.A., Yaroslavtseva N.V., Lazarev V.I., Frid A.S., Interpretation of data on the aggregate composition of typical chernozems under different land use by cluster and principal component analyses, Eurasian Soil Science, 2016, Vol. 49, No. 9, pp. 1026–1032, DOI: 10.1134/S1064229316090076.
55. Gregorich E.G., Kachanoski R.G., Voroney R.P., Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions, Canadian Journal of Soil Science, 1988, Vol. 68, No. 2, pp. 395–403, DOI: 10.4141/cjss88-036.
56. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Soil structure and carbon cycling, Australian Journal of Soil Research, 1994, Vol. 32, No. 5, pp. 1043–1068, DOI: 10.1071/SR9941043.
57. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy, Australian Journal of Soil Research, 1994, Vol. 32, No. 2, pp. 285–309, DOI: 10.1071/SR9940285.
58. Shaimukhametov M.Sh., Voronina K.A., Method of fractionation of organo-clay complexes by means of laboratory centrifuges, Pochvovedenie, 1972, No. 8, pp. 134–138.
59. Gregorich E.G., Kachanoski R.G., Voroney R.P., Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions, Canadian Journal of Soil Science, 1988, Vol. 68, No. 2, pp. 395–403, DOI: 10.4141/cjss88-036.
60. Griepentrog M., Schmidt M.W.I., Discrepancies in utilization of density fractionation along with ultrasonic dispersion to obtain distinct pools of soil organic matter, Journal of Plant Nutrition and Soil Science, 2013, Vol. 176, No. 4, pp. 500–504, DOI: 10.1002/jpln.201200469.
61. Gregorich E.G., Kachanoski R.G., Voroney R.P., Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions, Canadian Journal of Soil Science, 1988, Vol. 68, No. 2, pp. 395–403, DOI: 10.4141/cjss88-036.
62. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Soil structure and carbon cycling, Australian Journal of Soil Research, 1994, Vol. 32, No. 5, pp. 1043–1068, DOI: 10.1071/SR9941043.
63. Shein E.V., Karpachevskii L.O., Teorii i metody fiziki pochv (Theories and methods of soil physics), Moscow: Grif and K, 2007, 616 p.
64. Griepentrog M., Schmidt M.W.I., Discrepancies in utilization of density fractionation along with ultrasonic dispersion to obtain distinct pools of soil organic matter, Journal of Plant Nutrition and Soil Science, 2013, Vol. 176, No. 4, pp. 500–504, DOI: 10.1002/jpln.201200469.
65. Griepentrog M., Schmidt M.W.I., Discrepancies in utilization of density fractionation along with ultrasonic dispersion to obtain distinct pools of soil organic matter, Journal of Plant Nutrition and Soil Science, 2013, Vol. 176, No. 4, pp. 500–504, DOI: 10.1002/jpln.201200469.
66. Gruenewald G., Kaiser K., Jahn R., Guggenberger G., Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents, Organic Geochemistry, 2006, Vol. 37, No. 11, pp. 1573–1589, DOI: 10.1016/j.orggeochem.2006.05.002.
67. Gregorich E.G., Kachanoski R.G., Voroney R.P., Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions, Canadian Journal of Soil Science, 1988, Vol. 68, No. 2, pp. 395–403, DOI: 10.4141/cjss88-036.
68. Gruenewald G., Kaiser K., Jahn R., Guggenberger G., Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents, Organic Geochemistry, 2006, Vol. 37, No. 11, pp. 1573–1589, DOI: 10.1016/j.orggeochem.2006.05.002.
69. Cerli C., Celi L., Kalbitz K., Guggenberger G., Kaiser K., Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level, Geoderma, 2012, Vol. 170, pp. 403–416, DOI: 10.1016/j.geoderma.2011.10.009.
70. Gruenewald G., Kaiser K., Jahn R., Guggenberger G., Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents, Organic Geochemistry, 2006, Vol. 37, No. 11, pp. 1573–1589, DOI: 10.1016/j.orggeochem.2006.05.002.
71. John B., Yamashita T., Ludwig B., Flessa H., Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, 2005, Vol. 128, No. 1–2, pp. 63–79, DOI: 10.1016/j.geoderma.2004.12.013.
72. Griepentrog M., Schmidt M.W.I., Discrepancies in utilization of density fractionation along with ultrasonic dispersion to obtain distinct pools of soil organic matter, Journal of Plant Nutrition and Soil Science, 2013, Vol. 176, No. 4, pp. 500–504, DOI: 10.1002/jpln.201200469.
73. John B., Yamashita T., Ludwig B., Flessa H., Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, 2005, Vol. 128, No. 1–2, pp. 63–79, DOI: 10.1016/j.geoderma.2004.12.013.
74. Gruenewald G., Kaiser K., Jahn R., Guggenberger G., Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents, Organic Geochemistry, 2006, Vol. 37, No. 11, pp. 1573–1589, DOI: 10.1016/j.orggeochem.2006.05.002.
75. Kramer M. G., Lajtha K., Thomas G., Sollins P., Contamination effects on soil density fractions from high N or C content sodium polytungstate, Biogeochemistry, 2009, Vol. 92, No. 1–2, pp. 177–181, DOI: 10.1007/s10533-008-9268-6.
76. Eckmeier E., Gerlach R., Gehrt E., Schmidt M.W.I., Pedogenesis of Chernozems in Central Europe – A review, Geoderma, 2007, Vol. 139, No. 3–4, pp. 288–299, DOI: 10.1016/j.geoderma.2007.01.009.
77. John B., Yamashita T., Ludwig B., Flessa H., Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, 2005, Vol. 128, No. 1–2, pp. 63–79, DOI: 10.1016/j.geoderma.2004.12.013.
78. Kramer M. G., Lajtha K., Thomas G., Sollins P., Contamination effects on soil density fractions from high N or C content sodium polytungstate, Biogeochemistry, 2009, Vol. 92, No. 1–2, pp. 177–181, DOI: 10.1007/s10533-008-9268-6.
79. Krull E.S., Baldock J.A., Skjemstad J.O., Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover, Functional Plant Biology, 2003, Vol. 30, No. 2, pp. 207–222, DOI: 10.1071/FP02085.
80. Kramer M. G., Lajtha K., Thomas G., Sollins P., Contamination effects on soil density fractions from high N or C content sodium polytungstate, Biogeochemistry, 2009, Vol. 92, No. 1–2, pp. 177–181, DOI: 10.1007/s10533-008-9268-6.
81. John B., Yamashita T., Ludwig B., Flessa H., Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, 2005, Vol. 128, No. 1–2, pp. 63–79, DOI: 10.1016/j.geoderma.2004.12.013.
82. Helfrich M., Ludwig B., Buurman P., Flessa H., Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state C-13 NMR spectroscopy, Geoderma, 2006, Vol. 136, No. 1–2, pp. 331–341, DOI: 10.1016/j.geoderma.2006.03.048.
83. Krull E.S., Baldock J.A., Skjemstad J.O., Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover, Functional Plant Biology, 2003, Vol. 30, No. 2, pp. 207–222, DOI: 10.1071/FP02085.
84. Lal R., Soil carbon sequestration impacts on global climate change and food security, Science, 2004, Vol. 304, No. 5677, pp. 1623–1627, DOI: 10.1126/science.1097396.
85. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome.
86. Krull E.S., Baldock J.A., Skjemstad J.O., Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover, Functional Plant Biology, 2003, Vol. 30, No. 2, pp. 207–222, DOI: 10.1071/FP02085.
87. Kramer M. G., Lajtha K., Thomas G., Sollins P., Contamination effects on soil density fractions from high N or C content sodium polytungstate, Biogeochemistry, 2009, Vol. 92, No. 1–2, pp. 177–181, DOI: 10.1007/s10533-008-9268-6.
88. Lal R., Soil carbon sequestration impacts on global climate change and food security, Science, 2004, Vol. 304, No. 5677, pp. 1623–1627, DOI: 10.1126/science.1097396.
89. Mentler A., Schomakers J., Kloss S., Zechmeister-Boltenstern S., Schuller R., Mayer H., Calibration of ultrasonic power output in water, ethanol and sodium polytungstate, International Agrophysics, 2017, Vol. 31, No. 4, pp. 583–588, DOI: 10.1515/intag-2016-0083.
90. Lal R., Soil carbon sequestration impacts on global climate change and food security, Science, 2004, Vol. 304, No. 5677, pp. 1623–1627, DOI: 10.1126/science.1097396.
91. Krull E.S., Baldock J.A., Skjemstad J.O., Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover, Functional Plant Biology, 2003, Vol. 30, No. 2, pp. 207–222, DOI: 10.1071/FP02085.
92. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy, Australian Journal of Soil Research, 1994, Vol. 32, No. 2, pp. 285–309, DOI: 10.1071/SR9940285.
93. Mentler A., Schomakers J., Kloss S., Zechmeister-Boltenstern S., Schuller R., Mayer H., Calibration of ultrasonic power output in water, ethanol and sodium polytungstate, International Agrophysics, 2017, Vol. 31, No. 4, pp. 583–588, DOI: 10.1515/intag-2016-0083.
94. Plaza C., Giannetta B., Benavente I., Vischetti C., Zaccone C., Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing, Scientific Reports, 2019, Vol. 9, 10146, DOI: 10.1038/s41598-019-46577-y.
95. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Soil structure and carbon cycling, Australian Journal of Soil Research, 1994, Vol. 32, No. 5, pp. 1043–1068, DOI: 10.1071/SR9941043.
96. Mentler A., Schomakers J., Kloss S., Zechmeister-Boltenstern S., Schuller R., Mayer H., Calibration of ultrasonic power output in water, ethanol and sodium polytungstate, International Agrophysics, 2017, Vol. 31, No. 4, pp. 583–588, DOI: 10.1515/intag-2016-0083.
97. Lal R., Soil carbon sequestration impacts on global climate change and food security, Science, 2004, Vol. 304, No. 5677, pp. 1623–1627, DOI: 10.1126/science.1097396.
98. Plaza C., Giannetta B., Benavente I., Vischetti C., Zaccone C., Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing, Scientific Reports, 2019, Vol. 9, 10146, DOI: 10.1038/s41598-019-46577-y.
99. Poeplau C., Don A., Six J., Kaiser M., Benbi D., Chenu C., Cotrufo M. F., Derrien D., Gioacchini P., Grand S., Gregorich E., Griepentrog M., Gunina A., Haddix M., Kuzyakov Y., Kuhnel A., Macdonald L. M., Soong J., Trigalet S., Vermeire M. L., Rovira P., van Wesemael B., Wiesmeier M., Yeasmin S., Yevdokimov I., Nieder R., Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison, Soil Biology and Biochemistry, 2018, Vol. 125, pp. 10–26, DOI: 10.1016/j.soilbio.2018.06.025.
100. Plaza C., Giannetta B., Benavente I., Vischetti C., Zaccone C., Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing, Scientific Reports, 2019, Vol. 9, 10146, DOI: 10.1038/s41598-019-46577-y.
101. Mentler A., Schomakers J., Kloss S., Zechmeister-Boltenstern S., Schuller R., Mayer H., Calibration of ultrasonic power output in water, ethanol and sodium polytungstate, International Agrophysics, 2017, Vol. 31, No. 4, pp. 583–588, DOI: 10.1515/intag-2016-0083.
102. Gregorich E.G., Kachanoski R.G., Voroney R.P., Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions, Canadian Journal of Soil Science, 1988, Vol. 68, No. 2, pp. 395–403, DOI: 10.4141/cjss88-036.
103. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant and Soil, 2002, Vol. 241, No. 2, pp. 155–176, DOI: 10.1023/A:1016125726789.
104. Poeplau C., Don A., Six J., Kaiser M., Benbi D., Chenu C., Cotrufo M. F., Derrien D., Gioacchini P., Grand S., Gregorich E., Griepentrog M., Gunina A., Haddix M., Kuzyakov Y., Kuhnel A., Macdonald L. M., Soong J., Trigalet S., Vermeire M. L., Rovira P., van Wesemael B., Wiesmeier M., Yeasmin S., Yevdokimov I., Nieder R., Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison, Soil Biology and Biochemistry, 2018, Vol. 125, pp. 10–26, DOI: 10.1016/j.soilbio.2018.06.025.
105. Plaza C., Giannetta B., Benavente I., Vischetti C., Zaccone C., Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing, Scientific Reports, 2019, Vol. 9, 10146, DOI: 10.1038/s41598-019-46577-y.
106. Poeplau C., Don A., Six J., Kaiser M., Benbi D., Chenu C., Cotrufo M. F., Derrien D., Gioacchini P., Grand S., Gregorich E., Griepentrog M., Gunina A., Haddix M., Kuzyakov Y., Kuhnel A., Macdonald L. M., Soong J., Trigalet S., Vermeire M. L., Rovira P., van Wesemael B., Wiesmeier M., Yeasmin S., Yevdokimov I., Nieder R., Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison, Soil Biology and Biochemistry, 2018, Vol. 125, pp. 10–26, DOI: 10.1016/j.soilbio.2018.06.025.
107. Griepentrog M., Schmidt M.W.I., Discrepancies in utilization of density fractionation along with ultrasonic dispersion to obtain distinct pools of soil organic matter, Journal of Plant Nutrition and Soil Science, 2013, Vol. 176, No. 4, pp. 500–504, DOI: 10.1002/jpln.201200469.
108. Six J., Elliott E.T., Paustian K., Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Science Society of America Journal, 1999, Vol. 63, No. 5, pp. 1350–1358, DOI: 10.2136/sssaj1999.6351350x.
109. Gruenewald G., Kaiser K., Jahn R., Guggenberger G., Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents, Organic Geochemistry, 2006, Vol. 37, No. 11, pp. 1573–1589, DOI: 10.1016/j.orggeochem.2006.05.002.
110. Poeplau C., Don A., Six J., Kaiser M., Benbi D., Chenu C., Cotrufo M. F., Derrien D., Gioacchini P., Grand S., Gregorich E., Griepentrog M., Gunina A., Haddix M., Kuzyakov Y., Kuhnel A., Macdonald L. M., Soong J., Trigalet S., Vermeire M. L., Rovira P., van Wesemael B., Wiesmeier M., Yeasmin S., Yevdokimov I., Nieder R., Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison, Soil Biology and Biochemistry, 2018, Vol. 125, pp. 10–26, DOI: 10.1016/j.soilbio.2018.06.025.
111. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant and Soil, 2002, Vol. 241, No. 2, pp. 155–176, DOI: 10.1023/A:1016125726789.
112. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant and Soil, 2002, Vol. 241, No. 2, pp. 155–176, DOI: 10.1023/A:1016125726789.
113. Six J., Schultz P.A., Jastrow J.D., Merckx R., Recycling of sodium polytungstate used in soil organic matter studies, Soil Biology and Biochemistry, 1999, Vol. 31, No. 8, pp. 1193–1196.
114. Six J., Elliott E.T., Paustian K., Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Science Society of America Journal, 1999, Vol. 63, No. 5, pp. 1350–1358, DOI: 10.2136/sssaj1999.6351350x.
115. John B., Yamashita T., Ludwig B., Flessa H., Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, 2005, Vol. 128, No. 1–2, pp. 63–79, DOI: 10.1016/j.geoderma.2004.12.013.
116. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant and Soil, 2002, Vol. 241, No. 2, pp. 155–176, DOI: 10.1023/A:1016125726789.
117. Six J., Elliott E.T., Paustian K., Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Science Society of America Journal, 1999, Vol. 63, No. 5, pp. 1350–1358, DOI: 10.2136/sssaj1999.6351350x.
118. Sollins P., Swanston C., Kleber M., Filley T., Kramer M., Crow S., Caldwell B.A., Lajtha K., Bowden R., Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation, Soil Biology and Biochemistry, 2006, Vol. 38, No. 11, pp. 3313–3324, DOI: 10.1016/j.soilbio.2006.04.014.
119. Six J., Elliott E.T., Paustian K., Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Science Society of America Journal, 1999, Vol. 63, No. 5, pp. 1350–1358, DOI: 10.2136/sssaj1999.6351350x.
120. Kramer M. G., Lajtha K., Thomas G., Sollins P., Contamination effects on soil density fractions from high N or C content sodium polytungstate, Biogeochemistry, 2009, Vol. 92, No. 1–2, pp. 177–181, DOI: 10.1007/s10533-008-9268-6.
121. Six J., Schultz P.A., Jastrow J.D., Merckx R., Recycling of sodium polytungstate used in soil organic matter studies, Soil Biology and Biochemistry, 1999, Vol. 31, No. 8, pp. 1193–1196.
122. Six J., Schultz P.A., Jastrow J.D., Merckx R., Recycling of sodium polytungstate used in soil organic matter studies, Soil Biology and Biochemistry, 1999, Vol. 31, No. 8, pp. 1193–1196.
123. Six J., Schultz P.A., Jastrow J.D., Merckx R., Recycling of sodium polytungstate used in soil organic matter studies, Soil Biology and Biochemistry, 1999, Vol. 31, No. 8, pp. 1193–1196.
124. Torresan M.E., The use of sodium polytungstate in heavy mineral separations, Menlo Park, California, 1987, 18 p.
125. Sollins P., Swanston C., Kleber M., Filley T., Kramer M., Crow S., Caldwell B.A., Lajtha K., Bowden R., Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation, Soil Biology and Biochemistry, 2006, Vol. 38, No. 11, pp. 3313–3324, DOI: 10.1016/j.soilbio.2006.04.014.
126. Krull E.S., Baldock J.A., Skjemstad J.O., Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover, Functional Plant Biology, 2003, Vol. 30, No. 2, pp. 207–222, DOI: 10.1071/FP02085.
127. Sollins P., Swanston C., Kleber M., Filley T., Kramer M., Crow S., Caldwell B.A., Lajtha K., Bowden R., Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation, Soil Biology and Biochemistry, 2006, Vol. 38, No. 11, pp. 3313–3324, DOI: 10.1016/j.soilbio.2006.04.014.
128. Viret F., Grand S., Combined Size and Density Fractionation of Soils for Investigations of Organo-Mineral Interactions, Jove-Journal of Visualized Experiments, 2019, No. 144, URL: https://www.jove.com/video/58927/combined-size-density-fractionation-soils-for-investigations-organo.
129. Sollins P., Swanston C., Kleber M., Filley T., Kramer M., Crow S., Caldwell B.A., Lajtha K., Bowden R., Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation, Soil Biology and Biochemistry, 2006, Vol. 38, No. 11, pp. 3313–3324, DOI: 10.1016/j.soilbio.2006.04.014.
130. Torresan M.E., The use of sodium polytungstate in heavy mineral separations, Menlo Park, California, 1987, 18 p.
131. Lal R., Soil carbon sequestration impacts on global climate change and food security, Science, 2004, Vol. 304, No. 5677, pp. 1623–1627, DOI: 10.1126/science.1097396.
132. Torresan M.E., The use of sodium polytungstate in heavy mineral separations, Menlo Park, California, 1987, 18 p.
133. Viret F., Grand S., Combined Size and Density Fractionation of Soils for Investigations of Organo-Mineral Interactions, Jove-Journal of Visualized Experiments, 2019, No. 144, URL: https://www.jove.com/video/58927/combined-size-density-fractionation-soils-for-investigations-organo.
134. Mentler A., Schomakers J., Kloss S., Zechmeister-Boltenstern S., Schuller R., Mayer H., Calibration of ultrasonic power output in water, ethanol and sodium polytungstate, International Agrophysics, 2017, Vol. 31, No. 4, pp. 583–588, DOI: 10.1515/intag-2016-0083.
135. Torresan M.E., The use of sodium polytungstate in heavy mineral separations, Menlo Park, California, 1987, 18 p.
136. von Lutzow M., Kogel-Knabner I., Ekschmittb K., Flessa H., Guggenberger G., Matzner E., Marschner B., SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biology and Biochemistry, 2007, Vol. 39, No. 9, pp. 2183–2207, DOI: 10.1016/j.soilbio.2007.03.007.
137. Viret F., Grand S., Combined Size and Density Fractionation of Soils for Investigations of Organo-Mineral Interactions, Jove-Journal of Visualized Experiments, 2019, No. 144, URL: https://www.jove.com/video/58927/combined-size-density-fractionation-soils-for-investigations-organo.
138. von Lutzow M., Kogel-Knabner I., Ekschmittb K., Flessa H., Guggenberger G., Matzner E., Marschner B., SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biology and Biochemistry, 2007, Vol. 39, No. 9, pp. 2183–2207, DOI: 10.1016/j.soilbio.2007.03.007.
139. Plaza C., Giannetta B., Benavente I., Vischetti C., Zaccone C., Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing, Scientific Reports, 2019, Vol. 9, 10146, DOI: 10.1038/s41598-019-46577-y.
140. von Lutzow M., Kogel-Knabner I., Ekschmittb K., Flessa H., Guggenberger G., Matzner E., Marschner B., SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biology and Biochemistry, 2007, Vol. 39, No. 9, pp. 2183–2207, DOI: 10.1016/j.soilbio.2007.03.007.
141. Viret F., Grand S., Combined Size and Density Fractionation of Soils for Investigations of Organo-Mineral Interactions, Jove-Journal of Visualized Experiments, 2019, No. 144, URL: https://www.jove.com/video/58927/combined-size-density-fractionation-soils-for-investigations-organo.
142. von Luetzow M., Koegel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, European Journal of Soil Science, 2006, Vol. 57, No. 4, pp. 426–445, DOI: 10.1111/j.1365-2389.2006.00809.x.
143. von Luetzow M., Koegel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, European Journal of Soil Science, 2006, Vol. 57, No. 4, pp. 426–445, DOI: 10.1111/j.1365-2389.2006.00809.x.
144. von Luetzow M., Koegel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, European Journal of Soil Science, 2006, Vol. 57, No. 4, pp. 426–445, DOI: 10.1111/j.1365-2389.2006.00809.x.
145. Poeplau C., Don A., Six J., Kaiser M., Benbi D., Chenu C., Cotrufo M. F., Derrien D., Gioacchini P., Grand S., Gregorich E., Griepentrog M., Gunina A., Haddix M., Kuzyakov Y., Kuhnel A., Macdonald L. M., Soong J., Trigalet S., Vermeire M. L., Rovira P., van Wesemael B., Wiesmeier M., Yeasmin S., Yevdokimov I., Nieder R., Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison, Soil Biology and Biochemistry, 2018, Vol. 125, pp. 10–26, DOI: 10.1016/j.soilbio.2018.06.025.
146. von Lutzow M., Kogel-Knabner I., Ekschmittb K., Flessa H., Guggenberger G., Matzner E., Marschner B., SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biology and Biochemistry, 2007, Vol. 39, No. 9, pp. 2183–2207, DOI: 10.1016/j.soilbio.2007.03.007.
147. Wagai R., Mayer L.M., Kitayama K., Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review, Soil Science and Plant Nutrition, 2009, Vol. 55, No. 1, pp. 13–25, DOI: 10.1111/j.1747-0765.2008.00356.x.
148. Wagai R., Mayer L.M., Kitayama K., Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review, Soil Science and Plant Nutrition, 2009, Vol. 55, No. 1, pp. 13–25, DOI: 10.1111/j.1747-0765.2008.00356.x.
149. Wagai R., Mayer L.M., Kitayama K., Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review, Soil Science and Plant Nutrition, 2009, Vol. 55, No. 1, pp. 13–25, DOI: 10.1111/j.1747-0765.2008.00356.x.
150. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant and Soil, 2002, Vol. 241, No. 2, pp. 155–176, DOI: 10.1023/A:1016125726789.
151. von Luetzow M., Koegel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, European Journal of Soil Science, 2006, Vol. 57, No. 4, pp. 426–445, DOI: 10.1111/j.1365-2389.2006.00809.x.
152. The original non-toxic heavy liquid. Sodium Polytungstate. URL: www.sometu.de.
153. The original non-toxic heavy liquid. Sodium Polytungstate. URL: www.sometu.de.
154. The original non-toxic heavy liquid. Sodium Polytungstate. URL: www.sometu.de.
155. Six J., Elliott E.T., Paustian K., Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Science Society of America Journal, 1999, Vol. 63, No. 5, pp. 1350–1358, DOI: 10.2136/sssaj1999.6351350x.
156. Wagai R., Mayer L.M., Kitayama K., Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review, Soil Science and Plant Nutrition, 2009, Vol. 55, No. 1, pp. 13–25, DOI: 10.1111/j.1747-0765.2008.00356.x.
157.
158.
159.
160. The original non-toxic heavy liquid. Sodium Polytungstate. URL: www.sometu.de.
161. Six J., Schultz P.A., Jastrow J.D., Merckx R., Recycling of sodium polytungstate used in soil organic matter studies, Soil Biology and Biochemistry, 1999, Vol. 31, No. 8, pp. 1193–1196.
162.
163. Sollins P., Swanston C., Kleber M., Filley T., Kramer M., Crow S., Caldwell B.A., Lajtha K., Bowden R., Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation, Soil Biology and Biochemistry, 2006, Vol. 38, No. 11, pp. 3313–3324, DOI: 10.1016/j.soilbio.2006.04.014.
164. Torresan M.E., The use of sodium polytungstate in heavy mineral separations, Menlo Park, California, 1987, 18 p.
165. Viret F., Grand S., Combined Size and Density Fractionation of Soils for Investigations of Organo-Mineral Interactions, Jove-Journal of Visualized Experiments, 2019, No. 144, URL: https://www.jove.com/video/58927/combined-size-density-fractionation-soils-for-investigations-organo.
166. von Lutzow M., Kogel-Knabner I., Ekschmittb K., Flessa H., Guggenberger G., Matzner E., Marschner B., SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biology and Biochemistry, 2007, Vol. 39, No. 9, pp. 2183–2207, DOI: 10.1016/j.soilbio.2007.03.007.
167. von Luetzow M., Koegel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, European Journal of Soil Science, 2006, Vol. 57, No. 4, pp. 426–445, DOI: 10.1111/j.1365-2389.2006.00809.x.
168. Wagai R., Mayer L.M., Kitayama K., Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review, Soil Science and Plant Nutrition, 2009, Vol. 55, No. 1, pp. 13–25, DOI: 10.1111/j.1747-0765.2008.00356.x.
169. The original non-toxic heavy liquid. Sodium Polytungstate. URL: www.sometu.de.
170.
Review
For citations:
Farkhodov Yu.R., Yaroslavtseva N.V., Yashin M.A., Khokhlov S.F., Iliyn B.S., Lazarev V.I., Kholodov V.A. The yield values of densimetric fractions from typical chernozems of different land use types. Dokuchaev Soil Bulletin. 2020;(103):85-107. (In Russ.) https://doi.org/10.19047/0136-1694-2020-103-85-107