Preview

Dokuchaev Soil Bulletin

Advanced search

The balance of elements in the system “Luvic Chernozems – agricultural plants” on the Plavsk upland (Tula region of Russia)

https://doi.org/10.19047/0136-1694-2020-105-91-108

Abstract

To assess the transfer of macro (K, P, S, Mg, Ca, as well as Si, Na, Fe, Al, Mn and Ti) and microelements (Zn, Ba, Cu, Sr, Mo, as well as As, Zr, Pb, Co, Ni, V and Cr) from Luvic Chernozems (Aric, Loamic, Pachic) into agricultural plants, we studied the inventories of chemical elements in three agrocenoses (wheat, soybean, Galega orientalis Lam. and Bromopsis inermis Leyss grass mixtures) from the Plavsk upland (Tula Region). This territory is subjected to intensive industrial and agricultural impacts: it is 40 km away from the town of Shchekino with a nitrogen fertilizer plant and a thermal power plant, 60 km away from Tula with large metallurgical enterprises, 70 km away from the town of Novomoskovsk with several chemical enterprises and state district power plant. In soils, the total content of elements was determined by the X-ray fluorescence spectrometry. The elemental composition of plants after autoclave decomposition with a mixture of concentrated nitric acid and hydrogen peroxide and the content of the bioavailable fraction (extracted by an ammonium acetate buffer with pH 4.8) of elements in soil were estimated by the atomic emission spectrometry with inductively coupled plasma. In topsoil (a 10-cm layer), maximal inventories are typical for total Si (40 ± 4 kg/m2), Al (7.0 ± 0.8 kg/m2) and Fe (3.4 ± 0.3 kg/m2) and for bioavailable Ca (570 ± 48 g/m2), Mg (43 ± 4 g/m2), K (22 ± 6 g/m2). In plants, the main inventories (g/m2) of K, P, S, Mg, Si, Mn, Zn, Ba, Cu, Mo occur in the above ground phytomass. The most effectively plants assimilate bioavailable fractions of K, P, Ti, Mo, As, Zr, V. Based on the resource method for soil quality assessment, the studied Chernozems are characterized by a low level of Ni contamination, a moderate supply of bioavailable K with a lack of bioavailable P.

About the Authors

O. V. Shopina
Lomonosov Moscow State Univercity
Russian Federation
1 Leninskie Gori, Moscow 119234


I. N. Semenkov
Lomonosov Moscow State Univercity
Russian Federation
1 Leninskie Gori, Moscow 119234


T. A. Paramonova
Lomonosov Moscow State Univercity
Russian Federation
1 Leninskie Gori, Moscow 119234


O. L. Komissarova
Lomonosov Moscow State Univercity
Russian Federation
1 Leninskie Gori, Moscow 119234


References

1. Arinushkina E.V., Rukovodstvo po himicheskomu analizu pochv (A manual on chemical analysis of soils), Moscow: Moscow State University, 1970, 488 p.

2. Arlyapov V.A., Volkova Ye.M., Nechayeva I.A., Skvortsova L.S., Soderzhaniye tyazholykh metallov v pochve kak indikator antropogennogo zagryaz-neniya Tul'skoy oblasti (The content of heavy metals in the soil as an indicator of anthropogenic pollution of the Tula region), Izvestiya Tul'skogo Gos. Universiteta, Yestestvennyye nauki, 2015, No. 4, pp. 194–204.

3. Bargal'i R., Biogeokhimiya nazemnykh rastenii (Biogeochemistry of terrestrial plants), Moscow: GEOS, 2005, 457 p.

4. Il'in V.B., Biogeokhimiya i agrokhimiya mikroelementov (Mn, Cu, Mo, v) v yuzhnoi chasti Zapadnoi Sibiri (Biogeochemistry and agrochemistry of trace elements (Mn, Cu, Mo) in the southern part of Western Siberia), Novosibirsk: Sibirskoe otdelenie RAN, 1973, 401 p.

5. Kovalevskii A.L., Osnovnye zakonomernosti formirovaniya khimicheskogo sostava rastenii (The main laws of the formation of the chemical composition of plants), In: Biogeokhimiya rastenii (Biogeochemistry of plants): tr. Buryat. in-ta est. nauk, Ulan-Ude: Buryatskoe knizhnoe izd-vo, 1969, pp. 6–28.

6. Kolesnikov M.P., Formy kremniya v rasteniyakh (Forms of silicon in plants), Uspekhi biologicheskoi khimii, 2001, No. 41, pp. 331–332.

7. Radov A.S., Pustovoi I.V., Korol'kov A.V., Praktikum po agrokhimii (Workshop on agrochemistry), Moscow: Kolos, 1971, 335 p.

8. Ramazanova N.I., Akhmedova Z.N., Krugovorot mikroelementov v posevakh pshenitsy na lugovo-kashtanovoi pochve (The microelements cycle in wheat crops on kastanozems), Vestnik Dagestanskogo gosudarstvennogo universiteta, 2010, No. 6, pp. 63–67.

9. Ryzhikh L.Yu., Lipatnikov A.I., Raschety doz primeneniya mineral'nykh udobrenii v sevooborotakh (Calculations of the doses of mineral fertilizers in crop rotation), Kazan: Kazan University, 2018, 19 p.

10. Ryakhovsky A.V., Yartsev G.F., Soderzhaniye i zapasy khimicheskikh ele-mentov v pakhotnom sloye osnovnykh tipov i podtipov pochv Orenburgskoy oblasti (Content and stocks of chemical elements in the arable layer of the main types and subtypes of soils in the Orenburg region), Izvestiya Orienburgskogo gosudarstvennogo universiteta, 2006, Vol. 2, No. 10, pp. 108–109.

11. Smagin A.V., Shoba S.A., Makarov O.A., Ekologicheskaya otsenka pochvennykh resursov i tekhnologii ikh vosproizvodstva (na primere g. Moskvy) (Environmental assessment of soil resources and technologies for their reproduction (on example of Moscow), Moscow: Moscow state university, 2008, 360 p.

12. Suleimanov S.R., Nizamov R.M., Khozyaistvennyi vynos, koeffitsinty ispol'zovaniya elementov pitaniya podsolnechnikom v zavisimosti ot primeneniya bioprepratov (Household take-out, coefficients of using sunflower nutrition elements depending on the use of biological products), Vestnik Kazanskogo GAU, 2015, Vol. 2, No. 36, pp. 151–155.

13. Shopina O.V., Semenkov I.N., Paramonova T.A., Nakoplenie tyazhelykh metallov i 137Cs v rastitel'noi produktsii, vyrashchivaemoi na radioaktivno zagryaznennykh chernozemakh Tul'skoi oblasti (The accumulation of heavy metals and 137Cs in plant products grown on radioactive contaminated chernozems of the Tula region), Ecology and Industry of Russia, 2020, Vol. 24, No. 6, DOI: 10.18412/1816-0395-2020-6-48-53.

14. Boer J.L., Mulrooney S.B., Hausinger R.P., Nickel-dependent metalloenzymes, Arch. Biochem. Biophys., 2014, No. 544, pp. 142–152, DOI: 10.1016/j.abb.2013.09.002.

15. Kabata-Pendias A., Trace elements in soils and plants, New York: CRC Press, 2011, 467 p.

16. Kabata-Pendias A., Szteke B., Trace elements in abiotic and biotic environments, New York: CRC Press, 2015, 391 p.

17. Lavado R.S., Concentration of potentially toxic elements in field crops grown near and far from cities of the Pampas (Argentina), Journal of Environmental Management, 2006, Vol. 80, No. 2, pp. 116–119, DOI: 10.1016/j.jenvman.2005.09.003.

18. Liu G., Yu Y., Hou J., Xue W., Liu X., Liu Y., Wanhua W., Ahmed A., Tasawar H., Zhengtao L., An ecological risk assessment of heavy metal pollution of the agricultural ecosystem near a lead-acid battery factory, Ecol. Indic., 2014, No. 47, pp. 210–218, DOI: 10.1016/j.ecolind.2014.04.040.

19. Overesch M., Rinklebe J., Broll G., Neue H.U., Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany), Environ. Pollut., 2007, Vol. 145, No. 3, pp. 800–812, DOI: 10.1016/j.envpol.2006.05.016.

20. Wang L., Yin X., Gao S., Jiang T., Ma C., In vitro oral bioaccessibility investigation and human health risk assessment of heavy metals in wheat grains grown near the mines in North China, Chemosphere, 2020, No. 252, pp. 1–6, DOI: 10.1016/j.chemosphere.2020.126522.

21. Zhang T., Xu W., Lin X., Yan H., Ma M., He Z., Assessment of heavy metals pollution of soybean grains in North Anhui of China, Sci. Total Environ., 2019, No. 646, pp. 914–922, DOI: 10.1016/j.scitotenv.2018.07.335.

22.


Supplementary files

Review

For citations:


Shopina O.V., Semenkov I.N., Paramonova T.A., Komissarova O.L. The balance of elements in the system “Luvic Chernozems – agricultural plants” on the Plavsk upland (Tula region of Russia). Dokuchaev Soil Bulletin. 2020;(105):91-108. https://doi.org/10.19047/0136-1694-2020-105-91-108

Views: 939


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)