Mapping the boundaries of soil horizons using ground-penetrating radar
https://doi.org/10.19047/0136-1694-2020-105-57-90
Abstract
The article considers the role of GPR in solving problems of soil science, as well as the accuracy of tracking soil horizons using the example of field data. The study of the current state of the issue has shown that there is significant variability in the electrophysical properties of different types of soil. In this case, the dielectric constant of the soil horizons can both increase and decrease with depth. This fact determines the need for parameterization of the soil profile in GPR studies to prevent errors. Based on a generalizing analysis of practical examples, it has been established that the error in determining individual soil horizons by a GPR is on average 2–10 cm, depending on the frequency of the GPR antenna and the structural features of the soil. Experimental and methodological work to substantiate the main conclusions was carried out to trace the soil horizons by the GPR method using the example of typical entic podzol located on the Zaonezhsky Peninsula (Republic of Karelia), the structure and composition of which were described in detail earlier. The survey was carried out by a georadar OKO-2 (Logis-Geotech, Russia) with an antenna unit with a central frequency of 400 MHz. Fieldwork on the study site was carried out along separate transects, according to the reference soil profile. A detailed analysis of the radargrams provided, first of all, tracking the base of the BC horizon. The results obtained showed that the thickness of the soil within the profile varies from 23 to 32 cm, and the average observation error was ± 3 cm. Besides, the influence on the recording of shungite shale fragments and the differentiation of moisture content in the soil horizons was revealed. The presence of shungite shale leads to the formation of diffracted waves and an increase in the amplitudes of the reflected signal, while an increase in humidity is characterized by a decrease in the velocities of the electromagnetic wave.
Keywords
About the Author
P. A. RyazantsevRussian Federation
186910, Petrozavodsk, Pushkinskaya str., 11
References
1. Bahmet O.N., Litogennye pochvy, sformirovavshiesya na shungitovykh slantsakh. Putevoditel' pochvennoi ekskursii (Kizhi island. Lithogenic soils formed on schungite schists. Soil excursion guide), Petrozavodsk: KarNTs RAN, 2012, 44 p.
2. Bobrov P.P., Belyaeva T.A., Kroshka E.S., Rodionova O.V., Opredelenie vlazhnosti obraztsov pochv dielektricheskim metodom (Soil moisture meas-urement by the dielectric method), Pochvovedenie, 2019, No. 7, pp. 859–871, DOI: 10.1134/S0032180X19050034.
3. Vladov M.L., Sudakova M.S., Georadiolokatsiya: ot fizicheskikh osnov do perspektivnykh napravlenii (Ground penetrating radar: from the physical foundations to promising areas), Moscow: GEOS, 2017, 240 p.
4. Morozova R.M., Fedorec N.G., Bahmet O.N., Pochvy i pochvennyi pokrov Zaonezh'ya Karelii (Soils and soil cover Zaonezhye Karelia), Trudy KarNTs RAN, 2004, Vol. 6, pp. 69–89.
5. Pozdnyakov A.I., Polevaya elektrofizika pochv (Field Electrophysics of Soils), Moscow: MAIK “Nauka/Interperiodika”, 2001, 187 p.
6. Fedorec N.G., Raznoobrazie pochv i bioraznoobrazie v lesnykh ekosiste-makh srednei taigi (Soil diversity and biodiversity in forest ecosystems of the middle taiga), Moscow: Nauka, 2006, 287 p.
7. Ryazancev P.A., Bahmet O.N., Ispol'zovanie elektrorazvedochnykh metodov dlya kartirovaniya pochvennykh neodnorodnostei (Application of geoelectric methods for mapping soil heterogeneity), Pochvovedenie, 2020, No. 5, pp. 535–546, DOI: 10.31857/S0032180X20050123.
8. Starovojtov A.V., Interpretatsiya georadiolokatsionnykh dannykh (Inter-pretation of GPR data), Moscow: Moscow State University, 2008, 191 p.
9. Chudinova S.M., Dielektricheskie pokazateli pochvy i kategorii poch-vennoi vlagi (Dielectric characteristics of soils and categories of soil water), Pochvovedenie, 2009, No. 4, pp. 441–451.
10. Afshar F.A., Ayoubi S., Castrignanò A., Quarto R., Ardekani M.R.M., Using ground-penetrating radar to explore the cemented soil horizon in an arid region in Iran, Near Surface Geophysics, 2017, Vol. 15, No. 1, pp. 103–110, DOI: 10.3997/1873-0604.2016049.
11. al Hagrey S.A., Müller C., GPR study of pore water content and salinity in sand, Geophysical Prospecting, 2000, Vol. 48, No. 1, pp. 63–85, DOI: 10.1046/j.1365-2478.2000.00180.x.
12. Allred B.J., Daniels J.J., Ehsani M.R. (Eds.), Handbook of Agricultural Geophysics, Boca Raton: CRC Press, 2008, 432 p., DOI: 10.1201/9781420019353.
13. Allred B.J., Freeland R.S., Farahani H.J., Collins M.E., Agricultural geophysics: past, present, and future, 23rd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2010, pp. 190–202, DOI: 10.4133/1.3445432
14. Allred B.J., A GPR agricultural drainage pipe detection case study: Effects of antenna orientation relative to drainage pipe directional trend, Journal of Environmental and Engineering Geophysics, 2013, Vol. 18, No. 1, pp. 55–69, DOI: 10.2113/JEEG18.1.55.
15. André F., Jonard F., Jonard M., Lambot S., In situ characterization of forest litter using ground-penetrating radar, Journal of Geophysical Research: Biogeosciences, 2016, Vol. 121, No. 3, pp. 879–894, DOI: 10.1002/2015JG002952.
16. Annan A.P., Ground penetrating radar principles, procedures and appli-cations, Mississauga: Sensors & Software, 2003, 278 p.
17. Ardekani M.R.M., Off- and on-ground GPR techniques for field-scale soil moisture mapping, Geoderma, 2013, Vol. 200–201, pp. 55–66, DOI: 10.1016/j.geoderma.2013.02.010.
18. Bechtel T., Truskavetsky S., Pochanin G., Capineri L., Sherstyuk A., Viatkin K., Byndych T., Ruban V., Varyanitza-Roschupkina L., Orlenko O., Kholod P., Falorni P., Bulletti A., Bossi L., Crawford F., Characterization of electromagnetic properties of in situ soils for the design of landmine detection sensors: Application in Donbass, Ukraine, Remote Sensing, 2019, Vol. 11, No. 1232, pp. 1–16, DOI: 10.3390/rs11101232.
19. Boll J., van Rijn R.P.G., Weiler K.W., Ewen J.A., Daliparthy J., Her-bert S.J., Steenhuis T.S., Using ground-penetrating radar to detect layers in a sandy field soil, Geoderma, 1996, Vol. 70, No. 2–4, pp. 117–132, DOI: 10.1016/0016-7061(95)00077-1.
20. Borden K.A., Thomas S.C., Isaac M.E., Interspecific variation of tree root architecture in a temperate agroforestry system characterized using ground-penetrating radar, Plant Soil, 2017, Vol. 410, pp. 323–334, DOI: 10.1007/s11104-016-3015-x.
21. Butnor J.R., Doolittle J.A., Kress L., Cohen S., Johnsen K.H., Use of ground-penetrating radar to study tree roots in the southeastern United States, Tree Physiology, 2001, Vol. 21, No. 17, pp. 1269–1278, DOI: 10.1093/treephys/21.17.1269.
22. Butnor J.R., Campbell J.L., Shanley J.B., Zarnoch S.J., Measuring soil frost depth in forest ecosystems with ground penetrating radar, Agricultural and Forest Meteorology, 2014, Vol. 192–193, pp. 121–131, DOI: 10.1007/s11104-015-2768-y.
23. Cassidy N.J., Evaluating LNAPL contamination using GPR signal attenu-ation analysis and dielectric property measurements: Practical implications for hydrological studies, Journal of Contaminant Hydrology, 2007, Vol. 94, No. 1–2, pp. 49–75, DOI: 10.1016/j.jconhyd.2007.05.002.
24. Collins M.E., Doolittle J.A., Using ground-penetrating radar to study soil microvariability, Soil Science Society of America Journal, 1987, Vol. 51, No. 2, pp. 491–493, DOI: 10.2136/sssaj1987.03615995005100020045x.
25. Daniels J.J., Roberts R., Vendl M., Ground penetrating radar for the detec-tion of liquid contaminants, Journal of Applied Geophysics, 1995, Vol. 33, No. 1–3, pp. 195–207, DOI: 10.1016/0926-9851(95)90041-1.
26. De Benedetto D., Montemurro F., Diacono M., Mapping an agricultural field experiment by electromagnetic Induction and ground penetrating radar to improve soil water content estimation, Agronomy, 2019, Vol. 9, No. 638, pp. 1–16, DOI: 10.3390/agronomy9100638.
27. Doolittle J.A., Collins M.E., Use of soil information to determine appli-cation of ground penetrating radar, Journal of Applied Geophysics, 1995, Vol. 33, No. 1–3, pp. 101–108, DOI: 10.1016/0926-9851(95)90033-0.
28. Doolittle J.A., Minzenmayer F.E., Waltman S.W., Benham E.C., Tut-tle J.W., Peaslee S.D., Ground-penetrating radar soil suitability map of the conterminous United States, Geoderma, 2007, Vol. 141, No. 3–4, pp. 416–421, DOI: 10.1016/j.geoderma.2007.05.015.
29. Doolittle J.A., Butnor J.R., Soils, peatlands, and biomonitoring, In: Ground penetrating radar. Theory and applications, 2009, pp. 179–202, DOI: 10.1016/B978-0-444-53348-7.00006-5.
30. Doolittle J., Dobos R., Peaslee S., Waltman S., Benham E., Tuttle W., Revised ground-penetrating radar soil suitability maps, Journal of Environ-mental and Engineering Geophysics, 2010, Vol. 15, No. 3, pp. 111–118, DOI: 10.2113/JEEG15.3.111.
31. Doolittle J.A., Brevik E.C., The use of electromagnetic induction tech-niques in soils studies, Geoderma, 2014, Vol. 223–225, pp. 33–45, DOI: 10.1016/j.geoderma.2014.01.027.
32. Grote K., Anger C., Kelly B., Hubbard S., Rubin Y., Characterization of soil water content variability and soil texture using GPR ground wave tech-niques, Journal of Environmental and Engineering Geophysics, 2010, Vol. 15, No. 3, pp. 93–110, DOI: 10.2113/JEEG15.3.93.
33. Guo L., Chen J., Cui X.H., Fan B.H., Lin H., Application of ground penetrating radar for coarse root detection and quantification: A review, Plant and Soil, 2013, Vol. 362, pp. 1–23, DOI: 10.1007/s11104-012-1455-5.
34. Hruška J., Čermák J., Sustek S., Mapping tree root systems with ground-penetrating radar, Tree Physiology, 1999, Vol. 19, pp. 125–130, DOI: 10.1093/treephs/19.2.125.
35. Huisman J.A., Hubbard S.S., Redman J.D., Annan A.P., Measuring soil water content with ground penetrating radar: A review, Vadose Zone Journal, 2003, Vol. 2, No. 4, pp. 476–491, DOI: 10.2136/vzj2003.4760.
36. Igel J., On the small-scale variability of electrical soil properties and its influence on geophysical measurements: PhD Thesis. Frankfurt am Main, 2007, 173 p.
37. Ikazaki K., Nagumo F., Simporé S., Barro A., Soil toposequence, produc-tivity, and a simple technique to detect petroplinthites using ground-penetrating radar in the Sudan Savanna, Soil Science and Plant Nutrition, 2018, Vol. 64, No. 5, pp. 623–631, DOI: 10.1080/00380768.2018.1502604.
38. James I.T., Waine T.W., Bradley R.I., Taylor J.C., Godwin R.J., Deter-mination of Soil Type Boundaries using Electromagnetic Induction Scanning Techniques, Biosystems Engineering, 2003, Vol. 86, No. 4, pp. 421–430, DOI: 10.1016/j.biosystemseng.2003.09.001.
39. Léger E., Dafflon B., Soom F., Peterson J., Ulrich C., Hubbard S., Quantification of Arctic soil and permafrost properties using ground-penetrating radar and electrical resistivity tomography datasets, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 10, pp. 4348–4359, DOI: 10.1109/JSTARS.2017.2694447.
40. Liu X., Dong X., Leskovar D.I., Ground penetrating radar for underground sensing in agriculture: a review, International Agrophysics, 2016, Vol. 30, pp. 533–543, DOI: 10.1515/intag-2016-0010.
41. Lunt I.A., Hubbard S.S., Rubin Y., Soil moisture content estimation us-ing ground-penetrating radar reflection data, Journal of Hydrology, 2005, Vol. 307, No. 1–4, pp. 254–269, DOI: 10.1016/j.jhydrol.2004.10.014.
42. McKee A.M., The application of ground penetrating radar at the Kanorado locality, northwest Kansas: Master`s Thesis, Lawrence, 2009, 90 p.
43. Minet J., Bogaert P., Vanclooster M., Lambot S., Validation of ground penetrating radar full-waveform inversion for field scale soil moisture map-ping, Journal of Hydrology, 2012, Vol. 424–425, pp. 112–123, DOI: 10.1016/j.jhydrol.2011.12.034.
44. Pogosyan L., Sedov S., Pi-Puig T., Ryazantsev P., Rodionov A., Yudina A., Krasilnikov P., Pedogenesis of a retisol with fragipan in Karelia in the context of the Holocene landscape evolution, Baltica, 2018, Vol. 31, No. 2, pp. 134–145, DOI: 10.5200/baltica.2018.31.13.
45. Robinson D.A., Jones S.B., Wraith J.M., Or D., Friedman S.P., A re-view of advances in dielectric and electrical conductivity measurement in soils using Time domain reflectometry, Vadose Zone Journal, 2003, Vol. 2, pp. 444–475, DOI: 10.2113/2.4.444.
46. Rejšek K., Hruška J., Kuba L., Tichá R., Drobný D., Formánek P., Vranová V., A methodological contribution to use of Ground-penetrating radar (GPR) as a tool for monitoring contamination of urban soils with road salt, Urban Ecosystems, 2015, Vol. 18, pp. 169–188, DOI: 10.1007/s11252-014-0391-y.
47. Samouëlian A., Cousin I., Tabbagh A., Bruand A., Richarde G., Electrical resistivity survey in soil science: a review, Soil & Tillage Research, 2005, Vol. 83, pp. 173–193, DOI: 10.1016/j.still.2004.10.004.
48. Shih S.F., Myhre D.L., Ground-penetrating radar for salt-affected soil as-sessment, Journal of Irrigation and Drainage Engineering, 1994, Vol. 120, No. 2, pp. 322–333.
49. Simeoni M.A., Galloway P.D., O’Neil A.J., Gilkes R.J., A procedure for mapping the depth to the texture contrast horizon of duplex soils in south-western Australia using ground penetrating radar, GPS and kriging, Australi-an Journal of Soil Research, 2009, Vol. 47, pp. 613–621, DOI: 10.1071/SR08241.
50. Steelman C.M., Endres A.L., Jones J.P., High-resolution ground-penetrating radar monitoring of soil moisture dynamics: Field results, inter-pretation, and comparison with unsaturated flow model, Water resources re-search, 2012, Vol. 48, W09538, pp. 1–17, DOI: 10.1029/2011WR011414.
51. Steelman C.M., Endres A.L., van der Kruk J., Field observations of shal-low freeze and thaw processes using high-frequency ground-penetrating radar, Hydrological Processes, 2010, Vol. 24, pp. 2022–2033, DOI: 10.1002/hyp.7688.
52. Stover D.B., Day F.P., Butnor J.R., Drake B.G., Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar, Ecology, 2007, Vol. 88, No. 5, pp. 1328–1334, DOI: 10.1890/06-0989.
53. Szuch R.P., White J.G., Vepraskas M.J., Doolittle J.A., Application of ground penetrating radar to aid restoration planning for a drained Carolina bay, Wetlands, 2006, Vol. 26, No. 1, pp. 205–216.
54. Topp G.C., Davis J.L., Annan A.P., Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Re-sources Research, 1980, Vol. 16, pp. 574–582.
55. Tsoflias G.P., Becker M.W., Ground-penetrating radar response to fracture-fluid salinity: Why lower frequencies are favorable for resolving salinity changes, Geophysics, 2008, Vol. 73, No. 5, pp. 25–30, DOI: 10.1190/1.2957893.
56. Weihermüller L., Huisman J.A., Lambot S., Herbst M., Vereecken H., Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques, Journal of Hydrology, 2007, Vol. 340, pp. 205–216, DOI: 10.1016/j.jhydrol.2007.04.013.
57. Winkelbauer J., Vӧlkel J., Leopold M., Bernt N., Methods of surveying the thickness of humous horizons using ground penetrating radar (GPR): an example from the Garmisch-Partenkirchen area of the Northern Alps, Europe-an Journal of Forest Research, 2011, Vol. 130, pp. 799–812, DOI: 10.1007/s10342-010-0472-2.
58. Zajícová K., Chumana T., Application of ground penetrating radar meth-ods in soil studies: A review, Geoderma, 2019, Vol. 343, pp. 116–129, DOI: 10.1016/j.geoderma.2019.02.024.
59. Zhang J., Lin H., Doolittle J., Soil layering and preferential flow impacts on seasonal changes of GPR signals in two contrasting soils, Geoderma, 2014, Vol. 213, pp. 560–569, DOI: 10.1016/j.geoderma.2013.08.035.
60.
Supplementary files
Review
For citations:
Ryazantsev P.A. Mapping the boundaries of soil horizons using ground-penetrating radar. Dokuchaev Soil Bulletin. 2020;(105):57-90. (In Russ.) https://doi.org/10.19047/0136-1694-2020-105-57-90