Preview

Dokuchaev Soil Bulletin

Advanced search

Topographic conditions of soil drainage of Vladimir Opolie

https://doi.org/10.19047/0136-1694-2020-105-28-56

Abstract

This article demonstrates an approach to digital mapping of soil drainage in Vladimir Opolie controlled by topographic conditions. Topographic conditions of the key area are described by a digital terrain model and morphometric parameters with resolution of 30 m. The variety of soil drainage is represented by soil survey data of the RSFSR Goskomzem, which includes 170 soil observations with morphological characteristic of the degree of soil hydromorphism. Linear combination of the most significant morphometric parameters is calculated by the means of canonical discriminant analysis. This combination also interpreted as topographically induced soil drainage explains 70% of spatial variation of soil hydromorphism. Scores above 0.5 relate to gray forest soils of well drained moraine-erosional plains, gently and steep slopes of valleys. Scores below 0.5 relate to gleyic grey forest soils of shallow slopes of plains, deep valleys and depressions with poor soil drainage conditions.

About the Author

P. M. Shilov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017


References

1. Zvorykina O.B., Burtseva T.I., Vaseka K.T. i dr., Agroklimaticheskie resursy Vladimirskoi oblasti (Agroclimatic resources of the Vladimir region), Moscow: Upr. gidrometeorol. sluzhby tsentr. oblastei, 1968, 138 p.

2. Gvozdetskii N.A., Zvorykin K.V. et al, Agroprirodnoe i sel'skokhozyaistvennoe raionirovanie Nechernozemnoi zony evropeiskoi chasti RSFSR (Agri-natural and agricultural zoning of Non-Chernozem zone of the European part of the RSFSR), Moscow: Izd-vo MGU, 1987, 270 p.

3. Alifanov V.M., Serye lesnye pochvy tsentra Russkoi ravniny. Istoriko-geneticheskii analiz (Gray forest soils in the center of the Russian Plain. Historical and genetic analysis), In: Evoliutsiia i vozrast pochv SSSR (Evolution and age of soils in the USSR), Pushchino, 1986, pp. 155–162 (232 p.)

4. Alifanov V.M., Gugalinskaia L.A., Paleokriogenez i struktura pochvennogo pokrova Russkoi ravniny (Paleocryogenesis and the structure of the soil cover of the Russian Plain), Pochvovedenie, 1993, No. 7, pp. 65–75.

5. Alifanov V.M., Loshakova N.A., Vodnyi rezhim serykh lesnykh pochv (Water regime of gray forest soils), Pochvovedenie, 1981, No. 4, pp. 58–70.

6. Akhromeev L.M., Priroda, genezis, istoriia razvitiia i landshaftnaia struktura opolii Tsentral'noi Rossii (The nature, genesis, development history and landscape structure of opolij central Russia), Briansk: RIO Brianskogo gosudarstvennogo universiteta, 2008, 182 p.

7. Velichko A.A., Morozova T.D., Nechaev V.P., Porozhniakova O.M., Paleokriogenez, pochvennyi pokrov i zemledelie (Paleocryogenesis, soil cover and agriculture), M.: Izd-vo “Nauka”, 1996, 145 p.

8. Gulinova N.V., Agroklimaticheskie resursy Nechernozemnoi zony RSFSR (Agroclimatic resources of the Non-Black Earth Zone of the RSFSR), In: Agrometeorologicheskie usloviia i produktivnost' sel'skogo khoziaistva Nechernozemnoi zony RSFSR (Agrometeorological conditions and agricultural productivity of the Non-Black Earth Zone of the RSFSR), Leningrad: Gidrometeoizdat, 1978, pp. 17–32.

9. Jongman R.G.G., Analiz dannykh v ekologii soobshchestv i landshaftov (Data analysis in community and landscape ecology), Moscow: RASKhN, 1999, 306 p.

10. Dobrovol'skii G.V., Urusevskaia I.S., Geografiia pochv (Geography of soils), Moscow: Izd-vo MGU, 1984, 416 p.

11. Zaidel'man F.R., Gidrologicheskii rezhim pochv Nechernozemnoi zony Rossii (geneticheskie, agronomicheskie i meliorativnye aspekty) (Hydrological regime of soils in the Non-Chernozem zone of Russia (genetic, agronomic and meliorative aspects)), Leningrad: Gidrometeoizdat, 1985, 328 p.

12. Zaidel'man F.R., Rezhim i usloviia melioratsii zabolochennykh pochv (Regime and conditions of reclamation of swampy soils), Moscow: Kolos, 1975, 321 p.

13. Egorov V.V., Ivanova E.N., Fridland V.M., Klassifikatsiia i diagnostika pochv SSSR (Classification and diagnostics of soils in the USSR), Moscow: Izd-vo “Kolos”, 1977, 221 p.

14. Kozlov D.N., Sorokina N.P., Traditsii i innovatsii v krupnomasshtabnoi pochvennoi kartografii (Traditions and innovations in the area of the large-scale soil mapping), In: Tsifrovaya pochvennaya kartografiya: teoreticheskie i eksperimental'nye issledovaniya (Digital soil mapping: theoretical and experimental studies), Moscow: Dokuchaev Soil Science Institute, 2012, pp. 35–57 (350 p.)

15. V.V. Romanov., Landshafty Vladimirskoi oblasti: Ch.1. Landshafty Smolensko-Moskovskoi provintsii (Landscapes of the Vladimir region: Part 1. Landscapes of the Smolensk-Moscow province), Vladimir: Izd-vo Vladim. gos. un-ta, 2008, 56 p.

16. Lipkina G.S., Vliianie pochvoobrazuiushchikh porod i rel'efa na plodorodie dernovo-podzolistykh pochv Tsentral'nogo raiona Rossii: Avtoref. dis. … kand. s.-kh. nauk (Influence of parent rocks and relief on the fertility of sod-podzolic soils in the Central region of Russia, Extended abstract of cand. agric. sci. thesis), Moscow, 1993, 44 p.

17. Makeev A.O., Dubrovina I.V., Geografiia, genezis i evoliutsiia pochv Vladimirskogo opol'ia (Geography, genesis and evolution of soils of the Vladimir opolie), Pochvovedenie, 1990, No. 7, pp. 5–25.

18. Minaev N.V., Nikitin A.A., Kozlov D.N., The scale levels identification for the plowland topography organization, Dokuchaev Soil Bulletin, 2019, No. 96, pp. 3–21, DOI: 10.19047/0136-1694-2019-96-3-21.

19. Kiriushin V.I., Ivanov A.L., Model' adaptivno-landshaftnogo zemledeliia Vladimirskogo opol'ia (Model of adaptive landscape farming of Vladimirskoe opolye), Moscow: “Agrokonsalt”, 2004, 456 p.

20. Morev D.V., Agroekologicheskaia otsenka zemel' v usloviiakh zonal'nogo riada agrolandshaftov s povyshennoi pestrotoi pochvennogo pokrova: Diss. … kand. biol. nauk (Agroecological assessment of lands in conditions of a zonal series of agricultural landscapes with increased variegation of soil cover, Cand. biol. sci. thesis), Moscow, 2017, 137 p.

21. Nikolaev V.A., Paragenezis polesii-opolii Tsentral'noi Rossii (Paragenesis of forested lowlands (polesye) and high plains (opolye) in central Russia), Vestnik Moskovskogo universiteta. Geografiia, 2013, No. 5, pp. 45–50.

22. Fridland V.M., Mikhailova R.P., Pochvennyi pokrov Nechernozem'ia i ego ratsional'noe ispol'zovanie (Soil cover of the Non-Chernozem Region and its rational use), Moscow: Agropromizdat, 1986, 245 p.

23. Pochvy i rekomendatsii po ikh ispol'zovaniiu Vladimirskoi gosudarstvennoi oblastnoi sel'skokhoziaistvennoi opytnoi stantsii Suzdal'skogo raiona Vladimirskoi oblasti (Soils and recommendations for their use of the Vladimir State Regional Agricultural Experimental Station of the Suzdal District of the Vladimir Region), Vladimir: Tsentrgiprozem (Vladimirskii filial), 1991, 65 p.

24. Prokhorova Z.A., Sorokina N.P., Vliianie komponentov elementarnoi struktury dernovo-podzolistykh pochv na produktivnost' sel'skokhoziaistvennykh rastenii (Influence of the components of the elementary structure of sod-podzolic soils on the productivity of agricultural plants), Dokuchaev Soil Bulletin, 1975, No. 8, pp. 178–190.

25. Puzachenko Yu.G., Matematicheskie metody v ekologicheskikh i geograficheskikh issledovaniyakh (Mathematical methods in environmental and geographical researches), Moscow: Izd-vo “Akademiya”, 2004, 416 p.

26. Puzachenko M.Yu., Puzachenko Yu.G., Kozlov D.N., Fedyaeva M.V., Kartografirovanie moshchnosti organogennogo i gumusovogo gorizontov lesnykh pochv i bolot yuzhnotaezhnogo landshafta (yugo-zapad Valdaiskoi vozvyshennosti) na osnove trekhmernoi modeli rel'efa i distantsionnoi informatsii (landsat 7) (The mapping of the thickness of organic matter and humus horizons of soils and bogs in the southern taiga (Valdai hills) on the basis of dugital elevation model and remote sensing data (Landsat-7)), Issledovanie Zemli iz kosmosa, 2006, No. 4, pp. 70–79.

27. Romanova T.A., Vodnyi rezhim v geneticheskoi kharakteristike pochv gumidnoi zony (Water regime in the genetic characteristics of soils in the humid zone), Pochvovedenie, 1994, No. 4, pp. 32–39.

28. Rubliuk M.V., Rol' kholmisto-morennogo rel'efa v formirovanii svoistv dernovo-podzolistykh pochv i urozhainosti kartofelia v usloviiakh Tsentral'nogo raiona Nechernozemnoi zony RF: Diss. … kand. s-kh. nauk (The role of hilly-moraine relief in the formation of the properties of sod-podzolic soils and potato productivity in the Central Region of the Non-Chernozem Zone of the Russian Federation, Cand. agric. sci. thesis), Tver, 2003, 177 p.

29. Rubtsova L.P., O genezise pochv Vladimirskogo opol'ia (On the genesis of the soils of the Vladimir opolye), Pochvovedenie, 1974, No. 6, pp. 1–27.

30. Savastru N.G., Agroekologicheskaia otsenka pochvennogo pokrova Vladimirskogo opol'ia dlia proektirovaniia adaptivno-landshaftnykh sistem zemledeliia: Diss. … kand. biol. nauk (Agroecological assessment of the soil cover of the Vladimir opolye for the design of adaptive landscape farming systems, Cand. biol. sci. thesis), Moscow, 1999, 169 p.

31. Savin I.Iu., Zhogolev A.V., Prudnikova E.Iu., Sovremennye trendy i problemy pochvennoi kartografii (Modern trends and problems of soil mapping), Pochvovedenie, 2019, No. 5, pp. 517–528.

32. Simakova M.S., Elementarnye pochvennye struktury Vladimirskogo opolya (Elementary soil structures of the Vladimir opolye), In: Pochvy SSSR. Printsipy i genetiko-geograficheskie aspekty issledovanii (Soils of the USSR. Principles and genetics-geographic aspects of research), Moscow: Pochv. in-t im. V.V. Dokuchaeva, 1987, pp. 50–56.

33. Sorokina N.P., Mikroneodnorodnost' pochvennogo pokrova polei i ee sel'skokhoziaistvennoe znachenie (Micro-heterogeneity of the soil cover of fields and its agricultural significance), In: Pochvy Moskovskoi oblasti i ikh ispol'zovanie (Soils of the Moscow region and their use), Moscow: Pochv. in-t im. V.V. Dokuchaeva, 2002, pp. 277–311.

34. Sysuev V.V., Morfometricheskii analiz geofizicheskoi differentsiatsii landshaftov (Morphometric analysis of geophysical differentiation of landscapes), Izvestiia Rossiiskoi akademii nauk. Seriia geograficheskaia, 2003, No. 4, pp. 36–50.

35. Tiuriukanov A.N., Bystritskaia T.L., Opol'ia Tsentral'noi Rossii i ikh pochvy (Opolyes of Central Russia and their soils), Moscow: Nauka, 1971, 240 p.

36. Satalkin A.I., Zhirov A.A., Ogleznev A.K., Shilova M.S., Nogina N.A., Romanova T.V., Zaks V.G., Fedorin Yu.V., Friev T.A., Ksenofontova V.A., Ukazaniya po diagnostike podzolistogo i bolotno-podzolistogo tipov pochv po stepeni ogleennosti (Guidelines for the diagnosis of podzolic and bog-podzolic soil types according to the degree of gleying), Moscow: Kartfilial Roszemproekta, 1982, 10 p.

37. Gvozdetskii N.A., Zhuchkova V.K., Fiziko-geograficheskoe raionirovanie Nechernozemnogo tsentra (Physical and geographical zoning of the Non-Chernozem Center), Moscow: Izd-vo MGU, 1963, 451 p.

38. Florinskii I.V., Gipoteza Dokuchaeva kak osnova tsifrovogo prognoznogo pochvennogo kartografirovaniia (k 125-letiiu publikatsii) (The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication)), Pochvovedenie, 2012, No. 4, pp. 500–506.

39. Shein E.V., Kiriushin V.I., Korchagin A.A., Mazirov M.A., Dembovetskii A.V., Il'in L.I., Otsenka agronomicheskoi odnorodnosti i sovmestimosti pochvennogo pokrova Vladimirskogo opol'ia (Assessment of agronomic uniformity and compatibility of the soil cover of the Vladimir opolye), Pochvovedenie, 2017, No. 10, pp. 1208–1215.

40. Shilov P.M., Kozlov D.N., Soil-agro-ecological assessement of the arable land of the Valdai upland based on the general survey, Dokuchaev Soil Bulletin, 2019, Vol. 98, pp. 5–36, DOI: 10.19047/0136-1694-2019-98-5-36.

41. Ågren A.M., Lidberg W., Strömgren M., Ogilvie J., Arp P.A., Evaluating digital terrain indices for soil wetness mapping – a Swedish case study, Hydrology and Earth System Sciences, 2014, Vol. 18, No. 9, pp. 3623–3634.

42. Bell J.C., Cunningham R.L., Havens M.W., Soil drainage class probability mapping using a soil-landscape model, Soil Science Society of America Journal, 1994, Vol. 58, No. 2, pp. 464–470.

43. Bock M., Köthe R., Predicting the depth of hydrologic soil characteristics, Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 2008, Vol. 19, pp. 13–22.

44. Carroll S., Goonetilleke A., Khalil W.A.S., Frost R., Assessment via discriminant analysis of soil suitability for effluent renovation using undistributed soil columns, Geoderma, 2006, Vol. 131, No. 1–2, pp. 201–217.

45. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J., System for automated geoscientific analyses (SAGA) v.2.1.4, Geoscientific Model Development Discussions, 2015, Vol. 8, No. 2, pp. 2271–2312.

46. Debella-Gilo M., Etzelmüller B., Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway, Catena, 2009, Vol. 77, No. 1, pp. 8–18.

47. Florinsky I., Digital terrain analysis in soil science and geology, Puschino, Academic Press, 2016, 486 p.

48. Hengl T., Reuter H.I., Geomorphometry: concepts, software, applications, Amsterdam, Elsevier, 2008, 772 p.

49. Jenny H., Factors of Soil Formation: A System of Quantitative Pedology, New York, Dover Publications, 1941, 281 p.

50. Gillin C.P., Bailey S.W., McGuire K.J., Gannon J.P., Mapping of hydropedologic spatial patterns in a steep headwater catchment, Soil Science Society of America Journal, 2015, Vol. 79, No. 2, pp. 440-453.

51. Grabs T., Seibert J., Bishop K., Laudon H., Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model, Journal of Hydrology, 2009, Vol. 373, No. 1–2, pp. 15–23.

52. Lidberg W., Nilsson M., Ågren A., Using machine learning to generate high-resolution wet area maps for planning forest management: A study in a boreal forest landscape, Ambio, 2020, Vol. 49, No. 2, pp. 475–486.

53. Malone B.P., McBratney A.B., Minasny B., Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia, PeerJ, 2018, Vol. 6, pp. e4659.

54. McBratney A.B., Santos M.M., Minasny B., On digital soil mapping, Geoderma, 2003, Vol. 117, No. 1–2, pp. 3–52.

55. Minasny B., McBratney A.B., Digital soil mapping: A brief history and some lessons, Geoderma, 2016, Vol. 264, pp. 301–311.

56. Møller A.B., Iversen B.V., Beucher A., Greve M.H., Prediction of soil drainage classes in Denmark by means of decision tree classification, Geoderma, 2019, Vol. 352, pp. 314–329.

57. Odeh I.O.A., McBratney A.B., Chittleborough D.J., Spatial prediction of soil properties from landform attributes derived from a digital elevation model, Geoderma, 1994, Vol. 63, No. 3–4, pp. 197–214.

58. Shary P.A., Sharaya L.S., Mitusov A.V., Fundamental quantitative methods of land surface analysis, Geoderma, 2002, Vol. 107, No. 1–2, pp. 1–32.

59. Thompson J.A., Pena-Yewtukhiw E.M., Grove J.H., Soil–landscape modeling across a physiographic region: Topographic patterns and model transportability, Geoderma, 2006, Vol. 133, No. 1–2, pp. 57–70.

60. Troeh F.R., Landform parameters correlated to soil drainage, Soil Science Society of America Journal, 1964, Vol. 28, No. 6, pp. 808–812.

61. Webster R., Burrough P. A., Multiple discriminant analysis in soil survey, European Journal of Soil Science, 1974, Vol. 25, No. 1, pp. 120–134.

62. Weiss A., Topographic position and landforms analysis, Poster presentation, ESRI user Conference, San Diego, CA, 2001, Vol. 200.


Review

For citations:


Shilov P.M. Topographic conditions of soil drainage of Vladimir Opolie. Dokuchaev Soil Bulletin. 2020;(105):28-56. (In Russ.) https://doi.org/10.19047/0136-1694-2020-105-28-56

Views: 765


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)