Preview

Dokuchaev Soil Bulletin

Advanced search

Electrophysical and geoinformational methods of mapping the biological properties of peats

https://doi.org/10.19047/0136-1694-2020-103-149-167

Abstract

It is shown that the use of electrophysical methods and GIS technologies allows revealing soil coverage structure and spatial distribution of individual biological indicators, in particular, greenhouse gases production, in drained histosols (eutrophic peat soils) located in complex landscape and hydrological conditions of the Yakhroma Valley in the Moscow Region. The combination of GIS technologies and soil electrophysics made it possible to bring together the various aspects of the soil composition and functioning. Consequently, it generates easily readable “image” of soil in a given place and at certain times. The used approach is based on the idea that the electrical resistance of soils, associated with the density of mobile charges (cations and anions of soil absorbing complex and solution), is formed under the influence of soil-forming processes and it is an integral indicator of a wide range of soil properties. Taking into account that the evolution and degradation of peatlands after their drainage is a microbiological process primarily, we paid special attention to the research in this area. The experience has been obtained in the mapping of the microbial formation of CO2, N2O and CH4 in peat soils. On the one hand, it allows estimating the current intensity of organic matter decomposition and losses of nitrogen and carbon by peat soils of different botanical composition, terms and methods of meliorations, and on the other hand, to determine the contribution of these soils to the greenhouse effect. It was established that the electrical resistance of the soil, basal, substrate-induced respiration and denitrification activity (specific form of anaerobic respiration) depend on the same set of soil properties and correlate with each other within the studied area. The high speed and productivity of electrophysical methods allow them to be used for primary soil diagnostics, selection of key points for further research, detailing the cartographic contours and refining the calculations of greenhouse gas fluxes from large areas.

About the Authors

A. D. Pozdnyakova
Federal Research Centre “V.V. Dokuchaev Soil Science Institute
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017


L. A. Pozdnyakov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute; Lomonosov Moscow State University
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017;
1 Leninskie Gori, Moscow 119234



References

1. Aparin B.F., Abakumov E.V., Kasatkina G.A., Matinyan N.N., Rusakov A.V., Ryumin A.G., Sukhacheva E.Yu., Pochvennoe kartirovanie (Soil mapping), Saint-Petersburg: Izd-vo S.-Peterb. un-ta, 2012, 128 p.

2. Byshov N.V., Byshov D.N., Bachurin A.N., Oleinik D.O., Yakunin Yu.V., Geoinformatsionnye sistemy v sel'skom khozyaistve (Geoinformation systems in agriculture ), Ryazan': FGBOU VPO RGATU, 2013, 169 p.

3. Pozdnyakova A.D., Pozdnyakov L.A., Antsiferova O.N., Universal'nyi pribor dlya izmerenii elektricheskikh svoistv pochv (Universal device for measuring electrical properties of soils), Byulleten' nauki i praktiki, 2018, Vol. 4. No. 4, pp. 232–245.

4. Pozdnyakov A.I., Pozdnyakova L.A., Pozdnyakova A.D., Statsionarnye elektricheskie polya v pochvakh (Stationary electric fields in soils Stationary electric fields in soils), Moscow: KMK Scientific Press LTD, 1996, 358 p. URL: http://www.rfbr.ru/rffi/ru/books/o_37706.

5. Pozdnyakov A.I., Eliseev P.I., Pozdnyakov L.A., Elektrofizicheskii podkhod k otsenke nekotorykh elementov okul'turennosti i plodorodiya legkikh pochv gumidnoi zony (The electrophysical approach to assessing some elements of cultivation and fertility of light soils of the humid zone), Pochvovedenie, 2015, No. 7, pp. 832–842.

6. Pozdnyakov L.A., Otsenka biologicheskoi aktivnosti torfyanykh pochv po udel'nomu elektricheskomu soprotivleniyu (Assessment of the biological activity of peat soils by electrical resistivity), Pochvovedenie, 2008, No.10, pp. 1217–1223.

7. Savin I.Yu., Spatial aspects of applied Soil Science, Dokuchaev Soil Bulletin, 2020, Vol. 101, pp. 5–18, DOI: 10.19047/0136-1694-2020-101-5-18.

8. Savin I.Yu, Zhogolev A.V., Prudnikova E.Yu., Sovremennye trendy i problemy pochvennoi kartografii (Modern trends and problems of soil cartography, Pochvovedenie, 2019, No. 5, pp. 517–528.

9. Stepanov A.L., Lysak L.V., Metody gazovoi khromatografii v pochvennoi mikrobiologii (Gas chromatography methods in soil microbiology), Moscow: MAKS Press, 2002, 88 p.

10. Anderson-Cook C.M., Alley M.M., Roygard J.K.F., Khosla R., Noble R.B., Doolittle J.A. Differentiating Soil Types Using Electromagnetic Conductivity and Crop Yield Maps, Soil Science Society of America Journal, 2002, Vol. 66 (5), pp. 1562–1570, DOI: 10.2136/sssaj2002.1562.

11. Corwin D., Lesch S., Shouse P.J., Soppe R., Ayars J.E., Identifying Soil Properties that Influence Cotton Yield Using Soil Sampling Directed by Apparent Soil Electrical Conductivity, Agronomy J., 2003, Vol. 95 (2), DOI: 10.2134/agronj2003.03520.

12. Corwin D.L., Past, present, and future trends of soil electrical conductivity measurement using geophysical methods, Handbook of Agricultural Geophysics, Boca Raton: CRC Press, 2008, pp. 17–36. DOI: 10.1201/9781420019353.

13. Doolittle J.A., Brevik E.C., The use of electromagnetic induction techniques in soils studies, Geoderma, 2014, Vol. 223–225, pp. 33–45, DOI: 10.1016/j.geoderma.2014.01.027.

14. Gelsomino A., Keijzer-Wolters A.C., Cacco G., van Elsas J.D., Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis, Journal of microbiological methods, 1999, No. 38 (1–2), pp. 1–15.

15. Groffman P.M., Eagan P., Sullivan W.M., Lemunyon J.L., Grass species and soil type effects on microbial biomass and activity, Plant Soil, 1996, No. 183, pp. 61–67.

16. Johnson M.J., Lee K.Y., Scow K.M., DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities, Geoderma, 2003, Vol. 114, pp. 279–303.

17. Kim J., Roh A.-S., Choi S.-Ch., Kim E.-J., Choi M.-T., Ahn B.-K., Kim S.-K., Lee Y.-H., Joa J.-H., Kang S.-S., Lee S., Ahn J.-H., Song J., Weon H.-Y. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea, Journal of Microbiology, 2016, Vol. 54, pp. 838–845. DOI: 10.1007/s12275-016-6526-5.

18. Loke M.H., Chambers J.E., Rucker D.F., Kuras O., Wilkinson P.B., Recent developments in the direct-current geoelectrical imaging method, Journal of Applied Geophysics, 2013, Vol. 95, pp. 135–156. DOI: 10.1016/j.jappgeo.2013.02.017.

19. Lueck E., Ruehlmann J., Resistivity mapping with GEOPHILUS ELECTRICUS – Information about lateral and vertical soil heterogeneity, Geoderma, 2013, Vol. 199, pp. 2–11. DOI: 10.1016/j.geoderma.2012.11.009.

20. Lund E.D., Christy C.D., Drummond P.E., Practical applications of soil electrical conductivity mapping, Precision Agriculture. Proceedings of the Second European Conference on Precision Agriculture. Sheffield: Sheffield Academic Press Ltd, 1999, pp. 771–779.

21. Medeiros W., Queiroz D., Valente D., Pinto F., Melo C. The temporal stability of the variability in apparent soil electrical conductivity, Bioscience Journal, 2016, Vol. 32, pp. 150–159, DOI: 10.14393/BJ-v32n1a2016-26287.

22. Panissod C., Dabas M., Jolivet A., Tabbagh A., A novel mobile multipole system (MUCEP) for shallow (0–3 m) geoelectrical investigation: the “Vol-de-canards” array, Geophysical Prospecting, 1997, Vol. 45 (6), pp. 983–1002, DOI: 10.1046/j.1365-2478.1997.650303.x.

23. Singh G., Williard K.W.J., Schoonover J.E., Spatial Relation of Apparent Soil Electrical Conductivity with Crop Yields and Soil Properties at Different Topographic Positions in a Small Agricultural Watershed, Agronomy, 2016, Vol. 6 (4), 57 p., DOI: 10.3390/agronomy6040057.

24. Stadler A., Rudolph S., Kupisch M., Langensiepen M., van der Kruk J., Ewert F., Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements, European Journal of Agronomy, 2015, Vol. 64, pp. 8–20, DOI: 10.1016/j.eja.2014.12.004.

25.


Supplementary files

Review

For citations:


Pozdnyakova A.D., Pozdnyakov L.A. Electrophysical and geoinformational methods of mapping the biological properties of peats. Dokuchaev Soil Bulletin. 2020;(103):149-167. (In Russ.) https://doi.org/10.19047/0136-1694-2020-103-149-167

Views: 702


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)