Comparison of digital image analysis methods for morphometric characterization of soil aggregates in thin sections
https://doi.org/10.19047/0136-1694-2020-104-199-222
Abstract
The purpose of this study was to investigate the applicability of semiautomatic segmentation methods for obtaining and evaluating morphometric parameters of soil aggregates in artificially prepared loose samples in soil thin sections. The object of the research is typical arable Chernozem. The aggregates were separated by wet sieving method from loose sample of upper 10 cm of the plowing horizon after erosion by a model shallow water flow on a large erosion tray. The aggregates, loosely scattered on the glass and fixed with polyester resin, were used to produce the thin sections. Images of the thin sections were taken under a polarizing microscope and then were processed using two methods compared: Adobe Photoshop + CTan and Thixomet Pro. Data on morphometric parameters of aggregates were obtained: the shape factor, the degree of roundness and the coefficient of aggregate surface roughness. The convergence of the results obtained using Photoshop + CTan by three researchers was evaluated by comparing samples using the Student's test and the Mann-Whitney test. The convergence of the averaged results obtained using Photoshop + CTan and the results obtained using Thixomet Pro was evaluated using the Mann - Whitney test. No significant differences were found between the parameters of the same aggregates obtained using a combination of Adobe Photoshop and CTan programs by different researchers. No significant differences were found between the parameters of the same aggregates obtained by the compared methods. So, one can conclude that the reliability of determining the morphometric parameters of soil aggregates using Thixomet Pro is comparable to the reliability of results when working with images of sectionsin CTan after binarization in Adobe Photoshop. The method of obtaining data on morphometric parameters of soil aggregates using Thixomet Pro completely eliminates the possibility of subjective error, shows a high degree of automation, reproducibility and reliability of the results obtained, and is faster.
About the Authors
O. O. PlotnikovaRussian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017; 1 Leninskie Gori, Moscow 119234
T. V. Romanis
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
P. G. Kust
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
References
1. Vadyunina A.F., Korchagina Z.A., Metody issledovaniya fizicheskikh svoistv pochv (Methods for studying physical properties of soils), Moscow: Agropromizdat, 1986, 416 p.
2. Dmitriev E.A., Matematicheskaya statistika v pochvovedenii (Mathematical Statistics in Soil Science), Moscow: Knizhnyi dom Librokom, 2009, 327 p.
3. Klassifikatsiya i diagnostika pochv SSSR (Classification and Diagnosis of Soils in the USSR), Moscow: Kolos, 1977, 221 p.
4. Korolyuk T.V., Pochvennaya interpretatsiya kosmicheskikh izobrazhenii v sisteme metodov TsPK (Soil Interpretation of Space Images in the System of CPC Methods), In: Tsifrovaya pochvennaya kartografiya: teoretichsekie i eksperimental'nye issledovaniya (Digital Soil Cartography: Theoretical and Experimental Studies), Moscow: V.V. Dokuchaev Soil Science Institute, 2012, pp. 125-140.
5. Plotnikova O.O., Lebedeva M.P., Demidov V.V., Karpova D.V., Comparison of Micromorphometric Characteristics of Aggregates from Noneroded and Moderately Eroded Typical Chernozem in a Laboratory Experiment, Eurasian Soil Science, 2019, Vol. 52, No. 10, pp. 1258-1265, DOI: 10.1134/S1064229319100090.
6. Pol'skij M.N., O nekotoryh novyh putjah izuchenija poroznosti i struktury pochvy (About some new ways of studying the porosity and structure of soil), Eurasian Soil Science, 1955, No. 5, pp. 29-43.
7. Simakova M.S., From visual aerial photo interpretation and field soil survey to automated decoding and soil mapping by satellite imagery, Dokuchaev Soil Bulletin, 2014, Vol. 74, pp. 3-19, DOI: 10.19047/0136-16942014-74-3-19.
8. Skvortsov G.E., Panov V.A., Polyakov V.A., Fedin L.A., Mikroskopy (Microscopes), Leningrad: Izd-vo “Mashinostroenie”, 1989, 512 p.
9. Skvortsova E.B., Stroenie porovogo prostranstva estestvennyh i antropogennoizmenennyh pochv: Avtoref. dis kand. s.-kh. nauk (Structure of Pore Space of Natural and Anthropogenic Changed Soils, Extended abstract of cand. agric. sci. thesis), 03.00.27, Moscow, 1999, 44 p.
10. Sobolev R.N., Metody opticheskogo issledovanija mineralov (Optical Mineral Research Methods), Moscow: Nedra, 1990, 288 p.
11. Tropchenko A.A., Tropchenko A.Yu., Metody vtorichnoi obrabotki i raspoznavaniya izobrazhenii (Methods of secondary processing and recognition of images e), Saint-Petersburg: Universitet ITMO, 2015, 215 p.
12. Tursina T.V., Skvortsova E.B., Kulinskaya E.V., Gracheva M.V., Mikromorfometricheskij analiz poristosti pochv (Micro-morphometric analysis of soil porosity), Eurasian Soil Science, 1985, No. 4, pp. 60-69.
13. Feofarova I.I., Mikromorfologicheskaja harakteristika takyrov (Micromorphological characteristics of takyrs), In: Takyry Zapadnoj Turkmenii i puti ih sel'skohozjajstvennogo osvoenija (Takyrs of Western Turkmenistan and ways of their agricultural development), Moscow, 1956, pp. 351-380.
14. Zhang Y., Hartemink A.E., Huang J., Quantifying Coarse Fragments in Soil Samples Using a Digital Camera, Eurasian Soil Science, 2019, Vol. 52, No. 8, pp. 954-962, DOI: 10.1134/S1064229319080179.
15. Amada S., Imagawa K., Aoki S., Splat Profile of impinging droplets on rough substrates: influence of surface roughness, Surface and Coatings Technology, 2002, Vol. 154, pp. 27-33, DOI: 10.1016/S0257-8972(01)01517-1.
16. Angulo K., Gil D., Espitia H., Method for Edges Detection in Digital Images Through the Use of Cellular Automata, Advances in Intelligent Systems and Computing book series, 2020, Vol. 1078, pp. 3-21, DOI: 10.1007/978-3-030-33614-1 1.
17. Asmussen P., Conrad O, Gunther A., Kirsch M., Riller U., Semiautomatic segmentation of petrographic thin section images using a “seeded-region growing algorithm” with an application to characterize wheathered subarkose sandstone, Computers & Geosciences, 2015, Vol. 83, pp. 89-99, DOI: 10.1016/j.cageo.2015.05.001.
18. Bryk M., Macrostructure of diagnostic B horizons relative to underlying BC and C horizons in Podzols, Luvisol, Cambisol, and Arenosol evaluated by image analysis, Geoderma, 2016, Vol. 263, pp. 86-103, DOI: 10.1016/j.geoderma.2015.09.014.
19. Dorronsoro C., Micromorphometria de suelos. Aplicaciones, An. Edafol. Y agrobiol., 1988, Vol. 47, No. 1-2, pp. 503-530.
20. Gorbov S.N., Bezuglova O.S., Abrosimov K.N., Skvortsova E.B., Tagiverdiev S.S., Morozov I.V., Physical Properties of soils in Rostov agglomeration, Eurasian Soil Science, 2016, Vol. 49, pp. 898-907, DOI: 10.1134/S106422931606003X.
21. Ivanov A.L., Shein E.V., Skvortsova E.B., Tomography of soil pores: from morphological characteristics to structural-functional assessment of porespace, Eurasian Soil Science, 2019, Vol. 52, No. 1, pp. 50-57, DOI: 10.1134/S106422931901006X.
22. Jongerius A., Schoonderbeek D., Jager A., Kowalinski St., Electro-optical soil porosity investigation by means of Quantimet-B equipment, Geoderma, 1972, Vol. 7, pp. 177-198.
23. Kubiena W. (Ed.)., Die micromorphmetrishe Bodenanalyse, Stuttgart, 1967, 196 p.
24. Li P-N., Li H., Wu M-L., Wang S-Y., Kong Q-Y., Zhang Z., Sun Y., Liu J., Lv D-C., A Cost-Effective Transparency-Based Digital Imaging for Efficient and Accurate Wound Area Measurement, PLoS ONE, 2012, Vol. 7, Iss. 5, e38069, DOI: 10.1371/joumal.pone.0038069.
25. Marcelino V., Cnudde V., Vansteelandt S., Caro F., An evaluation of 2Dimage analysis techniques for measuring soil microporosity, European Journal of Soil Science, 2007, Vol. 58, pp. 133-140, DOI: 10.1111/j.1365-2389.2006.00819.x.
26. Mermut A.R., Norton L.D., Preface, Geoderma, Vol. 53, Iss. 3-4, pp. iii-iv, DOI: 10.1016/0016-7061(92)90053-A.
27. Pusda-Chulde M.R., Salazar-Fierro F.A., Sandoval-Pillajo L., Herrera-Granda E.P., Garda-Santillan I.D., De Giusti A., Image Analysis Based on Heterogeneous Architectures for Precision Agriculture: A Systematic Literature Review, Advances in Intelligent Systems and Computing book series, 2020, Vol. 1078, pp. 51-70, DOI: 10.1007/978-3-030-33614-1 4.
28. Rodriguez J., Edeskar T., Knutsson S., Particle shape quantities and measurement techniques: a review, Electronic Journal of Geotechnical Engineering, 2013, Vol. 18, pp. 169-198.
29. Russ J.C., The image processing handbook (5th edition), USA, Taylor & Francis Group, LLC, 2007, 818 p.
30. San Jose Martinez F., Munoz Ortega F.J., Caniego Monreal F.J., Kravchenko A.N., Wang W., Soil aggregate geometry: Measurements and morphology, Geoderma, 2015, Vol. 237-238, pp. 36-48, DOI: 10.1016/j.geoderma.2014.08.003.
31. Savin I.Y., Prudnikova E.Y., Vasilyeva N.A., Veretelnikova I.V., Bairamov A.N., The color of soils as a basis for proximal sensing of their composition, Dokuchaev Soil Bulletin, 2016, Vol. 86, pp. 46-52, DOI: 10.19047/0136-1694-2016-86-46-52.
32. Sauzet O., Cammas C., Gilliot J.M., Bajard M., Montagne D., Development of a novel image analysis procedure to quantify biological porosity and illuvial clay in large soil thin sections, Geoderma, 2017, Vol. 292, pp. 135-148, DOI: 10.1016/j.geoderma.2017.01.004.
33. Skvortsova E.B., Rozhkov V.A., Morphometric profiles of pore space in loamy soils of the forest and steppe zones of European Russia, Eurasian SoilScience, 2011, Vol. 4, No. 10, pp. 1209-1221, DOI: 10.1134/S1064229311100140.
34. Stoops G., Guidelines for analysis and description of soil and regolith thin sections, Soil Sci. Soc. Am. Madison, Wisconsin, 2003, 184 p., DOI: 10.2136/2003.guidelinesforanalysis.
35. Stoops G., Micromorphology as a Tool in Soil and Regolith Studies, Interpretation of Micromorphological Features of Soils and Regoliths, 2018, pp. 1-19, DOI: 10.1016/b978-0-444-63522-8.00001-2.
36. Takashimizu Y., Iiyoshi M., New parameter of roundness R: circularity corrected by aspect ratio, Progress in Earth and Planetary Science, 2O16, Vol. 3, Article No. 2, DOI: 10.1186/s40645-015-0078-x.
37. Wang Q., Hartemink A.E., Jiang Z., Jin N., Sun Z., Digital soil morphometrics of crotovinas in a deep Alfisol derived from loess in Shenyang, China, Geoderma, 2017, Vol. 301, pp. 11-18, DOI: 10.1016/j.geoderma.2017.04.010.
38. Working Group WRB, I., World Reference Base for Soil Resources 2014, update 2015, International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, 2015.
39. Wang Z, Liang X, Wu Z, Lin J, Huang J., A novel method for measuring anterior segment area of the eye on ultrasound biomicroscopic images using Photoshop, PLoS ONE, 2015, Vol. 10, Iss. 3, e0120843, DOI: 10.1371/journal.pone.0120843.
40. Zhao Y., Han Q., Zhao Y., Liu J., Soil pore identification with the adaptive fuzzy C-means method based on computed tomography images, Journal of Forestry Research, 2019, Vol. 30, pp. 1043-1052, DOI: '10.1007/s11676-018-0725-3.
Review
For citations:
Plotnikova O.O., Romanis T.V., Kust P.G. Comparison of digital image analysis methods for morphometric characterization of soil aggregates in thin sections. Dokuchaev Soil Bulletin. 2020;(104):199-222. (In Russ.) https://doi.org/10.19047/0136-1694-2020-104-199-222