Preview

Dokuchaev Soil Bulletin

Advanced search

The possibilities of using thermal infrared imaging data for detecting the main parameters of arable soil fertility

https://doi.org/10.19047/0136-1694-2020-105-146-172

Abstract

The analysis of the possibility of using the thermal infrared images for detecting soil fertility parameters of gray forest and alluvial arable soils was carried out by the example of a test filed in Tula region of Russia. Together with the sampling of 25 soil probes from the 0–10 cm layer, the open surface of the soil was photographed using a FLIR VUE 512 thermal imager, and the spectral reflectance of the soil was measured. According to the results of the correlation analysis, it was found that the closest correlations for thermal images are observed with the following parameters of soil fertility: the content of humus, nitrogen, exchangeable magnesium and potassium. The correlation coefficient between the humus content and the reflectance in the visible and near IR-regions, as well as with the average value of the reflectance in thermal band exceeds 0.81. In different diapasons of the visible spectrum, the spectral reflectance correlation with the content of exchangeable magnesium and potassium is lower than in the thermal band, where the correlation coefficient with the content of exchangeable magnesium is 0.81, and with the content of exchangeable potassium is 0.65. Power regression equations were constructed for detecting such soil fertility parameters as humus content (R2 = 0.74), exchangeable potassium content (R2 = 0.68), and exchangeable magnesium content (R2 = 0.72) by reflection in the thermal band of the spectrum. The regressions obtained with the thermal imager data and with the spectral reflectance data in the visible and near IR-bands are similar in quality for detecting humus and exchangeable potassium content, while for detecting exchangeable magnesium content they are a bit higher. The obtained results show that thermal infrared images are applicable for detecting the most significant parameters of soil fertility in the test field and can be used as a basis for their real-time remote sensing monitoring.

About the Authors

P. G. Grubina
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017


I. Yu. Savin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”; Ecological Faculty of RUDN University
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017;
8/2 Miklukho-Maklaya Str., Moscow 117198


E. Yu. Prudnikova
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”; Ecological Faculty of RUDN University
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017;
8/2 Miklukho-Maklaya Str., Moscow 117198


References

1. Agroklimaticheskii spravochnik po Tulskoi oblasti (Agroclimatic guide to the Tula region), Leningrad: Gidrometeoizdat, 1958, 128 p.

2. Antsiferov A.Yu., Tekhnologicheskie osobennosti identifikatsii sostoyaniya pochv metodami distantsionnogo zondirovaniya (Technological features of identification of soil condition by remote sensing methods), Izvestiya vysshikh uchebnykh zavedenii, Geodeziya i aerofotosemka, 2012, pp. 76–80.

3. Vadyunina A.F., Korchagina Z.A., Metody issledovaniya fizicheskikh svoistv pochv (Methods of studying the physical properties of soils), Moscow: Agropromizdat, 1986, 416 p.

4. Karmanov I.I., Spektralnaya otrazhatelnaya sposobnost i tsvet pochv kak pokazateli ikh svoistv (Spectral reflectivity and color of soils as indicators of their properties), Mosсow: Kolos, 1974, 351 p.

5. Kachinskii N.A., Fizika pochvy (Soil physics), Moscow: Vysshaya shkola, 1965, 321 p.

6. Metodicheskie ukazaniya po provedeniyu kompleksnogo monitoringa plodorodiya pochv zemel selskokhozyaistvennogo naznacheniya (Guidelines for the comprehensive monitoring of soil fertility of agricultural lands), Moscow: FGNU “Rosinformagrotekh”, 2003, 240 p.

7. Mikhailova N.A., Orlov D.S., Opticheskie svoistva pochv i pochvennykh komponentov (Optical properties of soils and soil components), Moscow: Nauka, 1986, 119 p.

8. Obukhov A.I., Orlov D.S., Spektral'naya otrazhatel'naya sposobnost glavneishikh tipov pochv i vozmozhnosti ispolzovaniya diffuznogo otrazheniya pri pochvennykh issledovaniyakh (Spectral reflectivity of the most important soil types and the possibility of using diffuse reflection in soil studies), Pochvovedenie, Moscow, 1964, No. 2, pp. 83–93.

9. Orlov D.S., Sukhanova N.I., Rozanova M.S., Spektralnaya otrazhatelnaya sposobnost pochv i ikh komponentov (Spectral reflectivity of soils and their components), Moscow: MGU, 2001, 176 p.

10. Ratnikov A.I., Pochvy Tulskoi oblasti: Avtoref. diss. … kand. s.-kh. nauk (Soils of the Tula region: Extended Abstract of Сand. agric. sci. thesis), Moscow, 1960, 25 p.

11. Red'kin F.B., Gennadiev A.N., Savin I.Yu., Antropogenno izmenennye pochvy severa Srednerusskoi vozvyshennosti: evolyutsiya i klassifikatsiya (Anthropogenically modified soils of the north of the Central Russian Upland: evolution and classification), Vestn. Mosk. un-ta. Ser. 5. Geografiya, Moscow, 1996, No. 2, pp. 31–36.

12. Savin I.Yu., Sovremennyi sputnikovyi monitoring pochv i posevov: dostizheniya i problemy (Modern satellite monitoring of soils and crops: achievements and challenges), In: Primenenie sredstv distantsionnogo zondirovaniya zemli v selskom khozyaistve (Application of remote sensing tools in agriculture), 2015, pp. 29–32.

13. Savin I.Yu., Simakova M.S., Sputnikovye tekhnologii dlya inventarizatsii i monitoringa pochv v Rossii (Satellite technologies for soil inventory and monitoring in Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 104–115.

14. Simakova M.S., Savin I.Yu., Ispolzovanie materialov aero-i kosmicheskoi semki v kartografirovanii pochv: puti razvitiya, sostoyanie, zadachi (The use of aerial and satellite imagery in soil mapping: development paths, status, tasks), Pochvovedenie, 1998, No. 11, pp. 1339–1347.

15. Sorokina N.P., Struktura pochvennogo pokrova pakhotnykh zemel: Tipizatsiya, kartografirovanie, agroekologicheskaya otsenka: Diss. … dokt. s.-kh. nauk: 03.00.27 (The structure of the soil cover of arable land: Typification, mapping, agroecological assessment: Doctor of agric. sci. thesis), Moscow, 2003, 294 p.

16. Chinilin A.V., Savin I.Yu., Potentsial'nye vozmozhnosti distantsionnoi indikatsii kharaktera pochvoobrazuyushchikh i podstilayushchikh porod chernozemnykh pochv po tsvetovym kharakteristikam ikh poverkhnosti (Potential remote indication of the nature of soil-forming and underlying rocks of chernozem soils by the color characteristics of their surface), Izvestiya Timiryazevskoi selskokhozyaistvennoi akademii, 2018, No. 1, pp. 48–59.

17. Shein E.V., Kurs fiziki pochv (Soil physics course), Moscow: MGU, 2005, 432 p.

18. Yagodin B.A., Zhukov Yu.P., Kobzarenko V.I., Agrokhimiya (Аgrochemistry), Moscow: Kolos, 2002, 584 p.

19. Camargo L.A., Marques J., Barron V., Ferracciu Alleoni L.R., Barbosa R.S., Pereira G.T., Mapping of clay, iron oxide and adsorbed phosphate in Oxisols using diffuse reflectance spectroscopy, Geoderma, 2015, Vol. 251, pp. 124–132.

20. Coutinho M.A.N., Alari F. de O., Ferreira M.M.C., Influence of soil sample preparation on the quantification of NPK content via spectroscopy, Geoderma, 2019, Vol. 338, pp. 401–409.

21. Csillag F., Pasztor L., Biehl L.L., Spectral band selection for the characterization of salinity status of soils, Remote Sensing of Environment, 1993, Vol. 43 (4), pp. 231–242.

22. Dhawale N.M., Adamchuk V.I., Prasher S.O., Rossel R.A.V., Ismail A.A., Kaur J., Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer, European journal of soil science, 2016, Vol. 66, pp. 661–669.

23. Hong Y., Yu L., Chen Y., Liu Y., Cheng H., Prediction of Soil Organic Matter by VIS-NIR Spectroscopy Using Normalized Soil Moisture Index as a Proxy of Soil Moisture, Remote sensing, 2018, Vol. 10, p. 28.

24. Islam K., Singh B., McBratney A., Simultaneous Estimation of Several Soil Properties by Ultra-Violet, Visible, and Near-Infrared Reflectance Spectroscopy, Australian Journal of Soil Research, 2003, Vol. 41, pp. 1101–1114.

25. Leng P., Song X., Li Z.L., Wang Y., Wang D., Effects of vegetation and soil texture on surface soil moisture retrieval using multi-temporal optical and thermal infrared observations, International journal of remote sensing, 2015, Vol. 36, pp. 4972–4985.

26. Ma F., Du C., Zhou J., A Self-Adaptive Model for the Prediction of Soil Organic Matter Using Mid-Infrared Photoacoustic Spectroscopy, Soil science society of America journal, 2016, Vol. 80, pp. 238–246.

27. Nanni M.R., Dematte J.A.M., Spectral reflectance methodology in comparison to traditional soil analysis, Soil science society of America journal, 2006, Vol. 70, pp. 393–407.

28. Palombo A., Pascucci S., Loperte A., Soil Moisture Retrieval by Integrating TASI-600 Airborne Thermal Data, Sensors, 2019, Vol. 19, p. 1515.

29. Rossel R.A.V., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O., Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties, Geoderma, 2006, Vol. 131, pp. 59–75.

30. Rossel R.A.V., Rizzo R., Dematte J.A.M., Behrens T., Spatial Modeling of a Soil Fertility Index using Visible-Near-Infrared Spectra and Terrain Attributes, Soil science society of America journal, 2010, Vol. 74, pp.1293–1300.

31. Sanchez J.M., French A.N., Mira M., Hunsaker D.J., Thorp K.R., Valor E., Caselles V., Thermal Infrared Emissivity Dependence on Soil Moisture in Field Conditions, IEEE transactions on geoscience and remote sensing, 2011, Vol. 49, pp. 4652–4659.

32. Soriano-Disla J.M., Janik L.J., Rossel R.A.V., Macdonald, L.M. McLaughlin M.J., The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties, Applied spectroscopy reviews, 2014, Vol. 49, pp. 139–186.

33. Stenberg B., Rossel R.A.V., Mouazen A.M., Wetterlind J., Visible and near infrared spectroscopy in soil science, Advances in agronomy, 2010, Vol. 107, pp. 163–215.

34. Vasat R., Kodesova R., Boruvka L., Klement A., Jaksik O., Gholizadeh A., Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS), Geoderma, 2014, Vol. 232–234, pp. 208–218.

35. Wang Y., Peng J., Song X., Leng P., Ludwig R., Loew A., Surface Soil Moisture Retrieval Using Optical/Thermal Infrared Remote Sensing Data, IEEE transactions on geoscience and remote sensing, 2018, Vol. 56, No. 9, pp. 5433–5442.

36. Xia Y., Ugarte C.M., Guan K., Pentrak M., Developing Near- and Mid-Infrared Spectroscopy Analysis Methods for Rapid Assessment of Soil Quality in Illinois, Soil science society of America journal, 2018, Vol. 82, No. 6, pp. 1415–1427.

37.


Supplementary files

Review

For citations:


Grubina P.G., Savin I.Yu., Prudnikova E.Yu. The possibilities of using thermal infrared imaging data for detecting the main parameters of arable soil fertility. Dokuchaev Soil Bulletin. 2020;(105):146-172. (In Russ.) https://doi.org/10.19047/0136-1694-2020-105-146-172

Views: 785


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)