Preview

Dokuchaev Soil Bulletin

Advanced search

Modern techniques for monitoring wind soil erosion

https://doi.org/10.19047/0136-1694-2020-104-110-157

Abstract

The article presents a scientific literature review in the field of modern methods of monitoring wind erosion of soils such as: visual indicators of erosion, erosion bridge, close-range photogrammetry, cesium-137 and remote sensing cover. The brief description of each method, advantages and disadvantages, conditions and limitations of their applicability are given. When choosing the method, it is necessary to take into account the monitoring conditions, the area of the territory under consideration and the scale of research, time frames, financial and labor resources. It has been established that the most relevant, economically justified and promising, especially on large territories, are the remote sensing methods, which allow monitoring on different scales, and not only estimating the erosion activity, but also predicting it, thus providing the parties concerned with the necessary information for making right, prompt and timely economic decisions, aimed both at combating wind erosion and elimination of its consequences, and for organizing preventive measures as well. To improve the effectiveness of these methods it is also necessary to create databases, expand and accumulate soil information that can help verify, refine, process and calibrate the satellite data obtained. In order to understand aeolian processes and dust particle transport mechanisms one should create integrated methods that include remote sensing data, meteorological data, on the basis of which the improved models and maps would be developed, and erosion processes would be predicted. The scientific literature is mostly devoted to the interpretation of wind erosion in arid and semi-arid zones. The possibility of satellite monitoring of soil erosion in arable fields remains poorly studied. There are also practically no research results available on the transport of chemicals with micro-particles due to wind erosion. Both in Russia and abroad the attempts are made in soil erosion modelling, but the quality of the models is very limited by the lack of field data required for their calibration and verification. Eroded soils in the country are still identified using ground-based methods. However, field studies can only be conducted in a very limited area, in a few key points, and as a matter of fact it is quite complicated to conduct field studies on actively used agricultural lands.

About the Authors

A. Yu. Romanovskaya
Federal Research Centre V.V. Dokuchaev Soil Science Institute
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



I. Yu. Savin
Federal Research Centre V.V. Dokuchaev Soil Science Institute; Belgorod State University
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017; 85 Pobedy Str., Belgorod 308015



References

1. Andronikov V.L., Aerokosmicheskie metody izucheniya pochv (Aerospace methods of soil investigation), Moscow: Kolos, 1979, 280 p.

2. Gendugov V.M., Glazunov G.P., Vetrovaya eroziya pochvy i zapylenie vozdukha (Wind erosion of soil and air dusting), Moscow: FIZMATLIT, 2007, 240 p.

3. Dolgilevich M.I., K metodike izmereniya glubiny vyduvaniya pochv (To methods of the soil blowing depth measurement), Pochvovedenie, 1958, No. 8, pp. 124-126.

4. Ivanov A.L., Kiryushin V.I., Molchanov E.N., Savin I.Yu., Stolbovoi V.S., Analiz zemel'noi reformy i agropromyshlennogo proizvodstva za chetvert' veka. Pochvenno-ekologicheskie, tekhnologicheskie institutsional'nye i infrastrukturnye aspekty modernizatsii. Zemel'naya sluzhba (doklad) (Analysis of Land Reform and Agro-Industrial Production for a Quarter of a Century. Soil ecological, technological institutional and infrastructural aspects of modernization. Land service (report)), Moscow: V.V. Dokuchaev Soil Science Institute, 2016, 93 p.

5. Kuznetsov M.S., Glazunov G.P., Eroziya i okhrana pochv (Erosion and Soil Protection), Moscow: Izdatel'stvo MGU, 2020, 387 p.

6. Larionov G.A., Eroziya i deflyatsiya pochv (Soil Erosion and Deflation), Moscow, 1993, 200 p.

7. Ivanov A.L. (Ed.), Nauchnye osnovy predotvrashcheniya degradatsii pochv (zemel') sel'skokhozyaistvennykh ugodii Rossii i formirovaniya sistem vosproizvodstva ikh plodorodiya v adaptivno-landshaftnom zemledelii (Scientific bases of prevention of degradation of soils (lands) of agricultural lands of Russia and formation of systems of reproduction of their fertility in adaptive-landscape agriculture), Moscow: V.V. Dokuchaev Soil Science Institute, 2013, 756 p.

8. Semenov O.E., Metodika vektornykh raschetov vetrovogo perenosa peska i solei vo vremya peschano-solevykh bur' (Methods of vectorial calculations of the wind transport of sand and salts during sand and salt storms), In: Agrometeorologiya (Agrometeorology), Leningrad, 1988, pp. 209-224.

9. Tregubov P.S., Dizengof E.G., Zakharova N.N., Protivoerozionnaya i protivodeflyatsionnaya stoikost' pochv i puti ee povysheniya (obzornaya informatsiya) (Anti-Erosion and Anti-Deflation Resistance of Soils and Ways to Increase It (review information)), VNIITEISKh, 1980, 61 p.

10. Alewell C., Meusburger K., Brodbeck M., Banninger D., Methods to describe and predict soil erosion in mountain regions, Landsc. Urban Plan., 2008, Vol. 88, pp. 46-53.

11. Blaney D.G., Warrington G.E., Estimating soil erosion using an erosion bridge, WSDG-TP-00008 Report, USDA Forest Service, Watershed Development Group, Fort Collins, 1983.

12. Borrelli P., Lugato E., Montanarella L., Panagos P., A New Assessment of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a Quantitative Spatially Distributed Modelling Approach, Land Degradation & Development, 2017, Vol. 28, pp. 335-344, DOI: 10.1002/ldr.2588.

13. Chappell A., Webb N.P., Using albedo to reform wind erosion modelling, mapping and monitoring, Aeolian Research, 2016, Vol. 23, pp. 63-78, DOI: 10.1016/j.aeolia.2016.09.006.

14. Clark R.D., Erosion condition classification system. Tech Note 346, Bureau of Land Management, Denver, Denver Service Center, 1980.

15. Collado A.D, Chuvieco E., Camarasa A., Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina, Journal of Arid Environments, 2002, Vol. 52, Iss. 1, pp. 121-133, DOI: 10.1006/jare.2001.0980.

16. Corwin D.L., Hopmans J., Rooij G.H., From field- to landscape-scale vadose zone processes: Scale issues, modeling, and monitoring, Vadose Zone Journal, 2006, Vol. 5, No. 1, pp. 129-139.

17. Duniway M.C., Pfennigwerth A.A., Fick S.E., Nauman T.W., Belnap J., Barger N.N., Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world, Ecosphere, 2019, Vol. 10, Iss. 3, e02650, DOI: 10.1002/ecs2.2650.

18. Fulajtar E., Mabit L., Renschler C.S., Lee Zhi Yi A., Use of 137Cs for soil erosion assessment, Food and Agriculture Organization of the United Nations, Rome, 2017, 64 p.

19. Gelaro R. et al., The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Journal of Climate, 2017, Vol. 30, Iss. 14, pp. 5419-5454, DOI: 10.1175/JCLI-D-16-0758.1.

20. Gitas I.Z., Douros K., Minakou C., Silleos G.N., Karydas C.G., Multitemporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model, EARSeL eProceeding, 2009, Vol. 8, No. 1, pp. 40-52.

21. Golosov V.N., Collins A.L., Dobrovolskaya N.G., Bazhenova O.I., Ryzhov Yu.V., Sidorchuk A.Yu., Soil loss on the arable lands of the foreststeppe and steppe zones of European Russia and Siberia during the period of intensive agriculture, Geoderma, 2021, Vol. 381, 114678, DOI: 10.1016/j.geoderma.2020.114678.

22. Hagen L.J., A wind erosion prediction system to meet user needs, Journal of soil and water conservation, 1991, Vol. 46, No. 2, pp. 106-111.

23. Jain S.K., Singh P., Seth S.M., Assessment of sedimentation in Bhakra Reservoir in the western Himalayan region using remotely sensed data, Hydrol. Sci. J., 2002, Vol. 47, No. 2, pp. 203-212.

24. Jonga S.M., Paracchini M.L., Bertolo F., Folving S., Megier J., Roo A.P.J., Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data, Catena, 1999, Vol. 37, Iss. 3-4, pp. 291-308.

25. Karydas C.G., Panagos P., Gitas I.Z., A classification of water erosion models according to their geospatial characteristics, International Journal of Digital Earth, 2012, Vol. 7, pp. 229-250, DOI: 10.1080/17538947.2012.671380.

26. Klik A., Wind Erosion Assessment in Austria Using Wind Erosion Equation and GIS, Vienna: BOKU - University of Natural Resources and Applied Life Sciences, 2004, URL: https://www.researchgate.net/publication/228798188 Wind erosion assessme nt in Austria using wind erosion equation and GIS.

27. Kouchami-Sardoo I., Shirani H., Esfandiarpour-Boroujeni I., Besalatpour A.A., Hajabbasi M.A., Prediction of soil wind erodibility using a hybridGenetic algorithm - Artificial neural network method, Catena, 2020, Vol. 187, 104315, DOI: 10.1016/j.catena.2019.104315.

28. Kosmadakis I., Tsardaklis P., Ioannou K., Zaimes G., A novel fully automated soil erosion monitoring system, Food and Environment. Proc. of the 17th Intern. Conf. on Information and Communication Technologies in Agriculture, 2015, pp. 80-84.

29. Leys J., McTainsh G., Shao Y., Wind Erosion Monitoring and Modeling Techniques in Australia, In: Sustaining the Global Farm, D.E. Stott, R.H. Mohtar, G.C. Steinhardt (eds.), 2001, pp. 940-950.

30. Loughran R.J., Pennock D.J., Walling D.E., Spatial Distribution of Caesium-137, In: Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides, Zapata F. (Ed), 2002, pp. 97-109.

31. Mabit L., Benmansour M., Walling D.E., Comparative advantages and limitations of Fallout radionuclides (137Cs, 210Pb and 7Be) to assess soil erosion and sedimentation, Journal of Environmental Radioactivity, 2008, Vol. 99, Iss. 12, pp. 1799-1807.

32. Mabit L., Bernard C., Makhlouf M., Laverdiere M.R., Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics, Geoderma, 2008, Vol. 145, pp. 245-251.

33. Mabit L., Meusburger K., Iurian A.R., Owens P.N., Toloza A., Alewell C., Sampling soil and sediment depth profiles at a fine-resolution with a new device for determining physical, chemical and biological properties: the Fine Increment Soil Collector (FISC), Journal of Soils and Sediments, 2014, Vol. 14 (3), pp. 630-636.

34. Mandakh N., Tsogtbaatar J., Dash D. et al., Spatial assessment of soil wind erosion using WEQ approach in Mongolia, J. Geogr. Sci., 2016, Vol. 26, pp. 473-483, DOI: 10.1007/s11442-016-1280-5.

35. Matthews N.A., Aerial and close-range photogrammetric technology: Providing resource documentation, interpretation, and preservation, Tech Note 428, Bureau of Land Management, National Operations Center, Denver, 2008.

36. Matthews N.A., Noble T.A., Breithaupt B.H., The application of photogrammetry, remote sensing and geographic information systems (GIS) to fossil resource management, In: Fossils from Federal Lands, Lucas S.G., J.A. Speilmann, P.M. Hester, J.P. Kenworthy, V.L. Santucci (Eds), 2006, Bulletin 34, New Mexico Museum of Natural History and Science, pp. 119-131.

37. Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.S., Cheng K. et al., Soil carbon 4 per mille, Geoderma, 2017, Vol. 292, pp. 59-86, DOI: 10.1016/j,geoderma,2017.01.002.

38. Morgan R.P.C., Soil Erosion and Conservation, Oxford: Blackwell publishing, 2005, 304 p.

39. Okin G.S., A new model of wind erosion in the presence of vegetation, J. Geophys. Res., 2008, Vol. 113, Iss. F2, DOI: 10.1029/2007JF000758.

40. Pandey A., Himanshu S.K., Mishra S.K., Singh V.P., Physically based soil erosion and sediment yield models revisited, CATENA, 2016, Vol. 147, pp. 595-620, DOI: 10.1016/j.catena.2016.08.002.

41. Siakeu J., Oguchi T., Soil erosion analysis and modelling: a review, Trans. Jpn. Geomorphol, 2000, Vol. 21, Iss. 4, pp. 413-429.

42. Pellant M., Shaver P., Pyke D.A., Herrick J.E., Interpreting indicators of rangeland health, version 4. Tech Ref 1734-6, Bureau of Land Management, National Science and Technology Center, Denver, 2005, URL: http://www.blm.gov/nstc/library/techref.htm.

43. Ritchie J.C., McCarty G.W., 137Cesium and soil carbon in a small agricultural watershed, Soil and Tillage Research, 2003, Vol. 69 (1-2), pp. 45-51.

44. Sac M.M., Ugur A., Yener G., Ozden B., Estimates of soil erosion using cesium-137 tracer models, Environmental Monitoring and Assessment, No. 136 (1-3), pp. 461-467.

45. Schmid T., Rodriguez-Rastrero M., Escribano P., Palacios-Orueta A., Ben-Dor E., Plaza A., Chabrillat S., Characterization of soil erosion indicators using hyperspectral data from a Mediterranean rainfed cultivated region, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9 (2), pp. 845-860.

46. Sepuru T.K., Dube T., An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring, Remote Sensing Applications: Society and Environment, 2018, Vol. 9, pp. 1-9, DOI: 10.1016/j.rsase.2017.10.005.

47. Shakesby R.A., The soil erosion bridge: A device for micro-profiling soil surfaces, Earth surface processes and landforms, 1993, Vol. 18, Iss. 9, pp. 823-827, DOI: 10.1002/esp.3290180906.

48. Shrestha D.P., Guidelines for monitoring and assessment of wind erosion at site level, 2008, 47 p.

49. Thiermann A., Sbresny J., Schafer W. GIS in WEELS - Wind Erosion on Light Soils, GeoInformatics, 2002, No. 5, pp. 30-33.

50. Vrieling A., Rodrigues S.C., Bartholomeus H., Sterk G., Automatic identification of erosion gullies with ASTER imagery in the Brazilian Cerrados, Int. J. Remote. Sens., 2007, Vol. 28, Iss. 12, pp. 2723-2738, DOI: 10.1080/01431160600857469.

51. Vrieling A., Satellite remote sensing for water erosion assessment: a review, Catena, 2006, Vol. 65, Iss. 1, pp. 2-18, DOI: 10.1016/j.catena.2005.10.005.

52. Vrieling A., De Jong S.M., Sterk G., Rodrigues S.C., Timing of erosion and satellite data: a multi-resolution approach to soil erosion risk mapping, Int. J. Appl. Earth Obs. GeoInf., 2008, Vol. 10, Iss. 3, pp. 267-281, DOI: 10.1016/j.jag.2007.10.009.

53. Webb N.P. et al., Enhancing Wind Erosion Monitoring and Assessment for U.S. Rangelands, Rangelands, 2017, Vol. 39, Iss. 3-4, pp. 85-96, DOI: 10.1016/j.rala.2017.04.001.

54. Webb N.P. et al., Indicators and benchmarks for wind erosion monitoring, assessment and management, Ecological Indicators, 2020, Vol. 110, 105881, DOI: 10.1016/j.ecolind.2019.105881.

55. Woodruff N.P., Siddoway F.H., A wind erosion equation, Soil Science Society of America Proceedings, 1965, Vol. 29, No. 5, pp. 602-608.

56. Ypsilantis W.G., Upland soil erosion monitoring and assessment: An overview, Tech Note 438, Bureau of Land Management, National Operations Center, Denver, 2011.

57. Zhidkin A.P., Shamshurina E.N., Golosov V.N., Komissarov M.A., Ivanova N.N., Ivanov M.M. Detailed study of post-Chernobyl Cs-137 redistribution in the soils of a small agricultural catchment (Tula region, Russia), Journal of Environmental Radioactivity, 2020, Vol. 223-224, 106386, DOI: 10.1016/j.jenvrad.2020.106386.

58. Zizala D., Zadorova T., Kapicka J., Assessment of soil degradation by erosion based on analysis of soil properties using aerial hyperspectral images and ancillary data, Czech Republic, Remote Sensing, 2017, Vol. 9 (1), 28, DOI: 10.3390/rs9010028.

59. Zizala D., Juncova A., Zadorova T., Zelenkova K., Minarik R., Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic, European Journal of Remote Sensing, 2019, Vol. 52, pp. 108-122, DOI: 10.1080/22797254.2018.1482524.

60. Zobeck T.M., Parker C., Haskell S., Guoding K., Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS, Agriculture, Ecosystems & Environment, 2000, Vol. 82, Iss. 1-3, pp. 247-259, DOI: 10.1016/S0167-8809(00)00229-2.


Review

For citations:


Romanovskaya A.Yu., Savin I.Yu. Modern techniques for monitoring wind soil erosion. Dokuchaev Soil Bulletin. 2020;(104):110-157. https://doi.org/10.19047/0136-1694-2020-104-110-157

Views: 1306


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)