Preview

Dokuchaev Soil Bulletin

Advanced search

Digital mapping of erosion degree of soils using the factor - property and factor - process - property models (the south of the Central Russian upland)

https://doi.org/10.19047/0136-1694-2020-104-158-198

Abstract

Soil degradation resulting from water erosion poses a serious threat to food and environmental security, therefore the research of soil erosion features and soil erosion mapping do not lose their relevance. The paper presents the results of large-scale digital mapping of the erosion degree of the arable soils in the Prokhorovsky district of the Belgorod region (85 thousand hectares), based on two approaches: (1) linking the factors of erosion-accumulative processes and the erosion degree of soil directly (factor -property model), and (2) due to imitation erosion model WaTEM/SEDEM (factor - process - property model). The inclusion of the process component into the digital soil mapping algorithm allows taking into account not only the spatial but also the temporal soil erosion features. It was revealed that the agricultural development of the Prokhorovsky district was primarily carried out on lands that are weakly prone to erosion, with the rate of erosion almost two times lower than on younger arable lands. As a result, the soil erosion maps, based on the factor - process - property model, with and without taking into account the duration of agricultural use, largely correspond to each other. Dominant soil categories (the map pixel corresponds to one soil taxa - noneroded and slightly eroded, medium, highly eroded), mapping by factor -property and factor - process - property models, have a high degree of correspondence to each other (prediction identity for 90% of pixels), while the soil combinations (the map pixel has information on the proportion of soils with different erosion degrees of soil) more significant (identity for less than 60% of pixels). The areas of zonal, erosion-zonal, and weakly eroded soil combinations differ 1.5-2 times, in the direction of a greater degree of soil erosion on the factor - process - property map.

About the Authors

M. A. Smirnova
Federal Research Centre V.V. Dokuchaev Soil Science Institute; Lomonosov Moscow State University
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017; Leninskie Gori, Moscow 119234



A. P. Zhidkin
Federal Research Centre V.V. Dokuchaev Soil Science Institute
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



N. I. Lozbenev
Federal Research Centre V.V. Dokuchaev Soil Science Institute
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



E. A. Zazdravnykh
Agrochemical Service Center Belgorodskiy
Russian Federation

8 Shchorsa Str., Belgorod 308027



D. N. Kozlov
Federal Research Centre V.V. Dokuchaev Soil Science Institute
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



References

1. Belevancev V.G., Chendev Ju.G., Problemy prirodopol'zovanija i jekologicheskaja situacija v Evropejskoj Rossii i sopredel'nyh stranah (Cartographic analysis of social and natural phenomena on the territory of the Belgorod region in the 18th, 19th and 20th centuries), In: Problemy prirodopol'zovanija i jekologicheskaja situacija v Evropejskoj Rossii i sopredel'nyh stranah (Problems of nature management and the ecological situation in European Russia and neighboring countries), Belgorod: “POLITERRA”, 2015. pp. 6–16.

2. Vaseneva E.G., Vasenev I.I., Shcherbakov A.P., Shnug E., Khansklaus S., Vnutripol'naya pestrota pochvennogo pokrova i urozhainosti v tsentre chernozemnoi zony Rossii (Intra-field variegation of soil cover and yield in the center of the chernozem zone of Russia), In: Antropogennaya evolyutsiya chernozemov (Anthropogenic evolution of chernozems), Voronezh: VGU, 2000, pp. 330–362.

3. Godel'man Ya.M., Pugaev A.P., Klassifikatsiya, sistematika i kartografiya struktury pochvennogo pokrova Pridunaiskoi ravniny (Classification, taxonomy and cartography of the soil cover pattern of the Danube plain), Pochvovedenie, 1979, No. 10, pp. 34–45.

4. Gosudarstvennyi (natsional'nyi) doklad o sostoyanii i ispol'zovanii zemel' v Rossiiskoi Federatsii v 2018 godu (State (national) report on the state and use of land in the Russian Federation in 2018), Rosreestr, 2019, 198 p.

5. Grigor'ev G.I., Elementarnaya struktura pochvennogo pokrova (Elementary soil cover pattern), Dokuchaev Soil Bulletin, 1975, Vol. VIII, pp. 6–16.

6. Dokuchaev V.V., Russkii chernozem:(Otchet Vol'nomu ekonomicheskomu obshchestvu) (Russian chernozem: (Report to the Free Economic Society)), St. Petersburg: tip. Deklerona i Evdokimova, 1883, 376 p.

7. Zhidkin A.P., Gennadiev A.N., Koshovskii T.S., Chendev Yu.G., Prostranstvenno-vremennye parametry lateral'noi migratsii tverdofaznogo veshchestva pochv (Belgorodskaya oblast') (Spatio-temporal parameters of the lateral migration of solid-phase soil matter (Belgorod Region), Vestn. Mosk. un-ta. Ser. 5. Geografiya, 2016, No. 3, pp. 9–17.

8. Zhidkin A.P., Smirnova M.A., Gennadiev A.N., Lukin S.V., Zazdravnykh E.A., Lozbenev N.I., Digital modeling of pattern and erosion degree of soil cover pattern ( Prokhorovskij district of Belgorod region), Eurasean soil science, 2021 (in print).

9. Zazdravnykh E.A., Prostranstvenno-vremennye osobennosti transformatsii pakhotnykh pochv lesostepi na yuge Srednerusskoi vozvyshennosti: Dis. ... kand. geogr. nauk (Spatial-temporal features of the transformation of arable soils of the forest-steppe in the south of the Central Russian Upland, Cand. geogr. sci. thesis), Belgorod, 2017, 200 p.

10. Karpachevskii L.O., Yashin I.M., Itogi pervoi vserossiiskoi konferentsii “Lizimetricheskie issledovaniya pochv” (Results of the first Russian conference “Lysimetric studies of soils”), Pochvovedenie, 1999, No. 10, pp. 1291–1294.

11. Kozlov D.N., Zhidkin A.P., Lozbenev N.I., Digital mapping of soil cover eroded patterns on the bassis of soil erosion simulation model (northern foreststeppe of the Central Russian Upland), Dokuchaev Soil Bulletin, 2019, Vol. 100, pp. 5–35, DOI: 10.19047/0136-1694-2019-100-5-35.

12. Lukin S.V., Agroekologicheskoe sostoyanie i produktivnost' pochv Belgorodskoi oblasti (Agroecological state and soil productivity of the Belgorod region), Belgorod: KONSTANTA, 2016, 344 p.

13. Obshchesoyuznaya instruktsiya po pochvennym obsledovaniyam i sostavleniyu krupnomasshtabnykh pochvennykh kart zemlepol'zovanii (USSR Instruction on Soil Investigations and Compilation of Large-Scale Soil Maps of Land Use), Moscow: Kolos, 1973, 48 p.

14. Pugaev A.P., Otobrazhenie neodnorodnosti pochvennogo pokrova yuga Moldavii na detal'nykh pochvennykh kartakh (Display of soil cover heterogeneity in the south of Moldova on detailed soil maps), Pochvovedenie, 1979, No. 3, pp. 28–34.

15. Solovichenko V.D., Tyutyunov S.I., Uvarov G.I., Metodika provedeniya pochvenno-erozionnogo obsledovaniya sklonovykh zemel' Belgorodskoi oblasti (Methodology for soil erosion survey of the slope lands of the Belgorod region), Belgorod: “Otchii krai”, 2014, 44 p.

16. Sorokina N.P., Statisticheskii metod otsenki smytosti na primere moshchnykh tipichnykh chernozemov Kurskoi opytnoi stantsii (Statistical method for assessing washout on the example of powerful typical chernozems of the Kursk experimental station), Pochvovedenie, 1966, No. 2, pp. 91–96.

17. Sorokina N.P., Elementarnye pochvennye struktury na polyakh Kurskoi opytnoi stantsii (Elementary soil structures in the fields of the Kursk Experimental Station), Krupnomasshtabnaya kartografiya pochv i ee znachenie v sel'skom khozyaistve chernozemnoi zony (Large-scale soil mapping and its importance in agriculture in the chernozem zone), Nauchnye trudy Pochvennogo instituta imeni V.V. Dokuchaeva (Scientific works of the V.V. Dokuchaev Soil Science Institute), Moscow, 1976. pp. 155–173.

18. Sorokina N.P., Dinamika pochvennogo pokrova raspakhannogo sklona Kurskoi opytnoi stantsii za 20-letnii period (Dynamics of the soil cover of the plowed slope of the Kursk experimental station over a 20-year period), In: Regional'nye modeli plodorodiya pochv kak osnova sovershenstvovaniya zonal'nykh sistem zemledeliya (Regional models of soil fertility as the basis for improving zonal farming systems), Moscow, 1988, pp. 163–171.

19. Sorokina N.P., Metodologija sostavlenija krupnomasshtabnyh agrojekologicheski orientirovannyh pochvennyh kart (Methodology for the compilation of large-scale agroecologically oriented soil maps), Moscow: Dokuchaev Soil Science Institute, 2006, 159 p.

20. Sorokina N.P., Kozlov D.N., Experience in digital mapping of soil cover patterns, Eurasian Soil Science, 2009, Vol. 42, pp. 182–193, DOI: 10.1134/S1064229309020094.

21. Fishman M.I., Chernozemnye kompleksy i ikh svyaz' s rel'efom na Srednerusskoi vozvyshennosti (Chernozem complexes and their relationship with the relief on the Central Russian Upland), Pochvovedenie, 1977, No. 5, pp. 17–30.

22. Chendev Yu.G., Evolyutsiya lesostepnykh pochv Srednerusskoi vozvyshennosti v golotsene (Evolution of forest-steppe soils of the Central Russian Upland in the Holocene), Moscow: GEOS, 2008. 212 p.

23. Chendev Yu.G., Gennadiev A.N., Belevancev V.G., Zhidkin A.P., Osobennosti izmenenija estestvennoj rastitel'nosti v rezul'tate mnogovekovogo hozjajstvennogo osvoenija juga Srednerusskoj vozvyshennosti (Features of changes in natural vegetation as a result of centuries-old economic development of the south of the Central Russian Upland), In: Problemy prirodopol'zovanija i jekologicheskaja situacija v Evropejskoj Rossii i sopredel'nyh stranah (Problems of natural resources and the ecological situation in European Russia and neighboring countries), Belgorod: “POLITERRA”, 2015, pp. 145–155.

24. Chendev Ju.G., Petin A.N., Izuchenie i ocenka pokazatelej antropogennoj degradacii prirodno-resursnogo potenciala na juge lesostepi Srednerusskoj vozvyshennosti (Study and assessment of indicators of anthropogenic degradation of natural resource potential in the south of the forest-steppe of the Central Russian Upland), Geologija, geografija i global'naja jenergija, 2008, No. 2 (29), pp. 112–121.

25. Chendev Yu.G., Izmenenie vo vremeni komponentov geograficheskoj sredy Belgorodskoj oblasti (Changes in time of the components of the geographic environment of the Belgorod region), Belgorod: Izd-vo BelGU, 1997, 84 p.

26. Chendev, Yu.G., Petin A.N., Estestvennye izmenenija i tehnogennaja transformacija komponentov okruzhajushhej sredy staroosvoennyh regionov (na primere Belgorodskoj oblasti) (Natural changes and technogenic transformation of environmental components of old-developed regions (on the example of the Belgorod region).), Moscow: MSU, 2006, 123 p.

27. Elementarnye pochvoobrazovatel'nye protsessy: Opyt kontseptual'nogo analiza, kharakteristika, sistematika (Elementary soil-forming processes: Experience of conceptual analysis, characteristics, taxonomy), Moscow: Nauka, 1992, 184 p.

28. Agricultural Baseline Projections to 2013, Staff Report WAOB-2004-1, Office of the Chief Economist, US Department of Agriculture, 2004.

29. Alewell C., Borrelli P., Meusburger K., Panagos P., Using the USLE : Chances, challenges and limitations of soil erosion modelling, International Soil and Water Conservation Research, 2019, Vol. 7 (3), pp. 203–225, DOI: 10.1016/j.iswcr.2019.05.004.

30. Angelini M.E., Heuvelink G.B.M., Including spatial correlation in structural equation modelling of soil properties, Spat. Stat, 2018, Vol. 25, pp. 35–51, DOI: 10.1016/j.spasta.2018.04.003.

31. Angelini M.E., Heuvelink G.B.M., Kempen B., Multivariate mapping of soil with structural equation modelling, European J. of Soil Science, 2017, Vol. 68 (5), pp. 575–591, DOI: 10.1111/ejss.12446.

32. Angelini M.E., Heuvelink G.B.M., Kempen B., Morras H.J.M., Mapping the soils of an Argentine Pampas region using structural equation modelling, Geoderma, 2016, Vol. 281, pp. 102–118, DOI: 10.1016/j.geoderma.2016.06.031.

33. Arrouays D., Mcbratney A., Bouma J., Libohova Z., Richer-de-forges A.C., Morgan C.L.S. et al., Impressions of digital soil maps : The good , the not so good, and making them ever better, Geoderma Regional, 2020, Vol. e00255, DOI: 10.1016/j.geodrs.2020.e00255.

34. Bockheim J.G., Gennadiyev A.N., The value of controlled experiments in studying soil-forming processes: A review, Geoderma, 2009, Vol. 152, No. 3–4, pp. 208–217, DOI: 10.1016/j.geoderma.2009.06.019.

35. Bui E.N., Hancock G.J., Wilkinson N.S., ‘Tolerable’ hillslope soil erosion rates in Australia: Linking science and policy, Agriculture, Ecosystems & Environment, 2011, Vol. 144, Issue 1, pp. 136–149, DOI: 10.1016/j.agee.2011.07.022.

36. Chaplot V., Lorentz S., Podwojewski P., Jewitt G., Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity, Geoderma, 2010, Vol. 157, Iss. 3–4, pp. 154–164, DOI: 10.1016/j.geoderma.2010.04.006.

37. Decision X/2 strategic plan for biodiversity 2011–2020 and the aichi biodiversity targets, Nagoya, 2012, URL: https://www.cbd.int/sp/.

38. Hartemink A., McBratney A., Mendosa-Sanyos L.M. (Eds), Digital soil mapping with limited data, Springer, 2008, 445 p.

39. Dotterweich M., The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation – A global synopsis, Geomorphology, 2013, Vol. 201, P. 1–34, DOI: 10.1016/j.geomorph.2013.07.021.

40. Flanagan D., Pedotransfer functions for soil erosion models, Developments in Soil Science, 2004, Vol. 30, pp. 177–193, DOI: 10.1016/S0166-2481(04)30011-5.

41. Guerra C.A., Pinto-Correia T., Metzger M.J., Mapping Soil Erosion Prevention Using an Ecosystem Service Modeling Framework for Integrated Land Management and Policy, Ecosystems, 2014, Vol. 17, pp. 878–889, DOI: 10.1007/s10021-014-9766-4.

42. Lozbenev N., Smirnova M., Bocharnikov M., Kozlov D. Digital Mapping of Habitat for Plant Communities Based on Soil Functions: A Case Study in the Virgin Forest-Steppe of Russia, Soil Systems, 2019, No. 3, 19 p., DOI: 10.3390/soilsystems3010019.

43. Ma Y., Minasny B., Malone B.P., Mcbratney A., Pedology and digital soil mapping (DSM), Eur. J. of Soil Science, 2019, Vol. 70, pp. 216–235, DOI: 10.1111/ejss.12790.

44. Martinez-Mena M., Carrillo-Lopez E., Boix-Fayos C., Almagro M., García Franco N., Diaz-Pereira E., Montoya I., de Vente J., Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems, Catena, 2020, Vol. 187, 104352. DOI: 10.1016/j.catena.2019.104352.

45. McBratney A.B., Santos M.L.M., Minasny B., On digital soil mapping, Geoderma, 2003, Vol. 117, pp. 3–52, DOI: 10.1016/S0016-7061(03)00223-4.

46. Minasny B., McBratney A., Digital soil mapping: a brief history and some lessons, Geoderma, 2016, Vol. 264, pp. 3013–311, DOI: 10.1016/j.geoderma.2015.07.017.

47. Sommer M., Augustin J., Kleber M. Feedbacks of soil erosion on SOC patterns and carbon dynamics in agricultural landscapes – The CarboZALF experiment, Soil and Tillage Research, 2016, Vol. 156, pp. 182–184, DOI: 10.1016/j.still.2015.09.015.

48. Thematic Strategy for Soil Protection (COM2006.231). Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of Regions. Brussels, 2006, URL: https://www.eea.europa.eu/policy-documents/soil-thematic-strategy-com-2006-231.

49. Transforming our world: The 2030 agenda for sustainable development, 2015, URL: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf.

50. Van der Kroef I., Koszinski S., Grinat M., Digital mapping of buried soil horizons using 2D and pseudo-3D geoelectrical measurements in a ground moraine landscape, Eur J Soil Sci, 2020, Vol. 71, pp. 10–26, DOI: 10.1111/ejss.12842.

51. Van Oost K., Govers G., Desmet P., Evaluating the effects of changes in landscape structure on soil erosion by water and tillage, Landscape Ecology, 2000, Vol. 15, pp. 577–589, DOI: 10.1023/A:1008198215674.

52. Van Rompay A., Verstraeten G., Van Oost K., Govers G., Poesen J. Modelling mean annual sediment yield using a distributed approach, Earth Surface Processes and Landforms, 2001, Vol. 26 (11), pp. 1221–1236, DOI: 10.1002/esp.275.

53. Vanwalleghem T., Gomez J.A., Infante Amate J., Gonzalez de Molina, M., Vanderlinden, K., Guzm an G., Laguna A., Giraldez J.V., Impact of historical land use and soil management change on ´ soil erosion and agricultural sustainability during the Anthropocene, Anthropocene, 2017, Vol. 17, P.13–39, DOI: 10.1016/j.ancene.2017.01.002.

54. Webster R., Burrough P.A., Multiple discriminant analysis in soil survey, European Journal of Soil Science, 1974, Vol. 25 (1), pp. 120–134.

55. Yaghobi A., Khalilimoghadam B., Saedi T., Rahnama M., The effect of exclosure management on the reduction of SOC loss due to splash erosion in gypsiferous soils in Southwestern Iran, Geoderma, 2018, Vol. 319, pp. 34–42, DOI: 10.1016/j.geoderma.2017.12.037.


Review

For citations:


Smirnova M.A., Zhidkin A.P., Lozbenev N.I., Zazdravnykh E.A., Kozlov D.N. Digital mapping of erosion degree of soils using the factor - property and factor - process - property models (the south of the Central Russian upland). Dokuchaev Soil Bulletin. 2020;(104):158-198. (In Russ.) https://doi.org/10.19047/0136-1694-2020-104-158-198

Views: 978


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)