Preview

Dokuchaev Soil Bulletin

Advanced search

Changes in the hydrophobic-hydrophilic properties of the organic matter of the chernozems of the Kamennaya Steppe

https://doi.org/10.19047/0136-1694-2021-106-49-76

Abstract

Soil samples and physical size-density fractions isolated from them (silt particle size less than 1 µm, light fraction (LF) with a density of less than 2 g/cm3 and a fraction of the residue) of ordinary chernozem were studied in three contrasting variants of the experimental fields of the Kamennaya Steppe agrolandscape of the Voronezh region: mowed steppe, long-term permanent bare fallow and permanent corn – the main differences of which are in tillage (cultivated and not cultivated lands) and in the supply/absence of plant residues and root secretions. The LF content changes in the series: “mowed steppe” > “permanent corn” > “permanent bare fallow”, which corresponds to the direction of changes in the total carbon content of the soil and a decrease in the value of the contact angle of wetting (CA) of the surface of the solid phase of the studied chernozems. The determination of the total C and N content revealed the change in the qualitative and quantitative composition of the size-density fractions for different land use cases. Chromatographic fractionation of alkaline extractions of humus substances (HS) of chernozem samples and size-density fractions revealed an increase in the degree of hydrophilicity of HS while simultaneously increasing the hydrophobicity of the solid phase surface and the carbon content in the soil. HS of LF of the “mowed steppe” turned out to be by 63% more hydrophilic than HS of LF of “permanent bare fallow” and by 47% more hydrophilic than HS of LF of “permanent corn”. While the hydrophilicity of the HS silt differed by 16 and 27%, respectively. The hydrophilicity of the HS of the original soil in the plot of the “mowed steppe” was by 41% higher than the hydrophilicity of the HS in the soil in the plot of “permanent bare fallow” and by 24% higher than in the soil of the plot of “permanent corn”. In addition, changes in the hydrophilicity of HS of size-density fractions are more intense than the HS of the soil, so the change in the degree of hydrophilicity of HS of size-density fractions is an indicator of soil degradation under different agrogenic pressue.

About the Authors

N. V. Matveeva
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation


E. Yu. Milanovsky
Lomonosov Moscow State University
Russian Federation


O. B. Rogova
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation


References

1. Aderihin P.G., Bogatyreva Z.S., Vozdejstvie zashchitnyh lesnyh nasazhdenij na soderzhanie i sostav organicheskogo veshchestva obyknovennyh chernozemov Kamennoj Stepi (Impact of protective forest stands on the content and composition of organic matter of ordinary chernozems of the Kamennaya Steppe), Pochvovedenie, 1974, Vol. 5, pp. 43–53.

2. Artemyeva Z.S., Organicheskoe veshchestvo i granulometricheskaya sistema pochvy (Organic matter and particle size distribution of the soil system), Moscow: Izdatel'stvo GEOS, 2010, 240 p.

3. Artemyeva Z.S., Kirillova N.P., The Role of Organic and Mineralogical Interaction Products in the Structure Forming and Humus Forming of the Basic Types of Soils in the Center of Russian Plain, Dokuchaev Soil Bulletin, 2017, Vol. 90, pp.73–95, DOI: 10.19047/0136-1694-2017-90-73-95.

4. Basov G.F., Grishchenko M.N., Gidrologicheskaya rol' lesnyh polos (po dannym issledovanij, provedennyh v Kamennoj stepi) (Hydrological role of forest belts (according to research carried out in the Stone Steppe)), Moscow: Goslesbumizdat, 1963, 201 p.

5. Bespalov V.A., CHeverdin Yu.I., Titova T.V., Transformaciya pochvennogo pogloshchayushchego kompleksa chernozemnyh pochv kamennoj stepi pri dlitel'nom postmeliorativnom vozdejstvii (Transformation of the soil absorbing complex of chernozem soils of the Kamennaya steppe under long-term post-meliorative influence), Agrofizika, 2018, Vol. 4, pp. 9–16.

6. Dymov A.A., Milanovskij E.Yu., Izmenenie organicheskogo veshchestva taezhnyh pochv v processe estestvennogo lesovozobnovleniya rastitel'nosti posle rubok (srednyaya tajga Respubliki Komi) (Changes in the organic matter of taiga soils in the process of natural reforestation of vegetation after logging (middle taiga of the Komi Republic), Pochvovedenie, 2014, Vol. 1, pp. 39–47.

7. Dymov A.A., Milanovskij E.Yu., Holodov V.A., Sostav i gidrofobnye svojstva organicheskogo veshchestva densimetricheskih frakcij pochv Pripolyarnogo Urala (Composition and hydrophobic properties of organic matter of densimetric fractions of soils of the Circumpolar Urals), Pochvovedenie, 2015, Vol. 11, pp. 1335–1345.

8. Zborishchuk Yu.N., Osobennosti gumusa chernozemov obyknovennyh Kamennoj Stepi (Characteristics of the humus of Chernozem ordinary of Kamennaya Steppe), Vestnik Moskovskogo universiteta. Seriya 17: Pochvovedenie, 2007, Vol. 2, pp. 3–9.

9. Kogut B.M., Shul'ts E., Titova N.A., Kholodov V.A., Organicheskoe veshchestvo granulodensimetricheskikh fraktsii tselinnogo i pakhotnogo tipichnogo chernozema (Organic matter of granulodensimetric fractions of virgin and arable typical chernozem), Agrohimiya, 2010, Vol. 8, pp. 3–9.

10. Kogut B.M., Titova N.A., Buleeva V.S., Antropogennaya transformaciya kachestvennogo sostava gumusa chernozemov Kamennoj Stepi (Anthropogenic transformation of the qualitative composition of the humus of the chernozems of the Stone Steppe), Dokuchaev Soil Bulletin, 2009, Vol. 64, pp. 41–49.

11. Kononova M.M., Bel'chikova N.P., Processy prevrashcheniya organicheskih veshchestv v obyknovennom chernozeme pri primenenii kompleksa Dokuchaeva-Kostycheva-Vil'yamsa (The processes of transformation of organic substances in ordinary chernozem when using the Dokuchaev-Kostychev-Williams complex), In: Voprosy travopol'noj sistemy zemledeliya (Grass farming issues), Moscow: Izd-vo AN SSSR, 1953, Vol. II, pp. 303–360.

12. Lebedeva I.I., Bazykina G.S., Grebennikov A.M., Cheverdin Yu.I., Bespalov V.A., The experience of the complex assessement of the impact of the length of agricultural use on properties and regimes of agrochernozems of Stony Steppe, Dokuchaev Soil Bulletin, 2016, Vol. 83, pp. 77–102, DOI: 10.19047/0136-1694-2016-83-77-102.

13. Mamontov V.G., Sokolovskaya E.L., Elementnyi i molekulyarno-massovyi sostav labil'nykh gumusovykh veshchestv chernozema obyknovennogo kamennoi stepi (The elemental and molecular mass composition of labile humic substances of chernozem of ordinary Kamennaya steppe), Izvestiya TSKhA, 2018, Vol. 1, pp. 130–138.

14. Matveeva N.V., Milanovsky E.Yu., Khaidapova D.D., Rogova O.B., The contact angle of wetting as an integral indicator of physical-chemical properties of Сhernozems of Kamennaya Steppe, Dokuchaev Soil Bulletin, 2020, Vol. 101, pp. 76–123, DOI: 10.19047/0136-1694-2020-101-76-123.

15. Milanovskij E.Yu., Amfifil'nye komponenty gumusovyh veshchestv pochv (Amphiphilic components of humus substances of soils), Pochvovedenie, 2000, Iss. 6, pp. 706–715.

16. Milanovskij E.Yu., Shein E.V., Rusanov A.M., Zasypkina D.I., Nikolaeva E.I., Anilova L.V., Pochvennaya struktura i organicheskoe veshchestvo tipichnyh chernozemo Predural'ya pod lesom i mnogoletnej pashnej (Soil structure and organic matter of typical chernozems of the Urals under forest and perennial arable land. Humus substances of soils as natural hydrophobic-hydrophilic compounds), Vestnik Orenburgskogo gosudarstvennogo universiteta, 2005, Vol. 2, pp. 113–117.

17. Milanovskij E.Yu., Gumusovye veshchestva pochv kak prirodnye gidrofobno-gidrofil'nye soedineniya (Conformational rearrangements of the suprastructure of humic acids of typical chernozem depending on the methods of tillage), Moscow: GEOS, 2009, 188 p.

18. Semenov V.M., Tulina A.S., Semenova N.A., Ivannikova L.A., Gumifikacionnye i negumifikacionnye puti stabilizacii organicheskogo veshchestva v pochve (obzor) (Humification and non-humification ways to stabilize organic matter in the soil (review)), Pochvovedenie, 2013, Vol. 4, pp. 393–407.

19. Skryl'nik E.V., Shevchenko N.V., Popirnyi M.A., Nikolov O.T., Konformatsionnye perestroiki suprastruktury guminovykh kislot chernozema tipichnogo v zavisimosti ot sposobov obrabotki pochvy (Conformational rearrangements of the suprastructure of humic acids of chernozem typical depending on soil cultivation methods), Izvestiya Natsional'noi akademii nauk Belarusi. Seriya biologicheskikh nauk, 2018, Vol. 63, Iss. 2, pp. 209–221.

20. Travnikova L.S., Zakonomernosti gumusonakopleniya: novye dannye i ih interpretaciya (Regularities of humus accumulation: new data and their interpretation), Pochvovedenie, 2002, No. 7, pp. 832–843.

21. Cheverdin Yu.I., Bespalov V.A., Prostranstvennoe var'irovanie soderzhaniya gumusa v chernozemakh Kamennoi Stepi (Spatial variation of the humus content in chernozems of the Kamennaya Steppe), Plodorodie, 2011, Vol. 4, pp. 28–29.

22. Shajmuhametov M.Sh., Titova N.A., Travnikova L.S., Primenenie fizicheskih metodov frakcionirovaniya dlya harakteristiki organicheskogo veshchestva pochv (Application of physical fractionation methods to characterize soil organic matter), Pochvovedenie, 1984, Vol. 8, pp. 131–141.

23. Ahmed M.A., Kroener E., Benard P., Zarebanadkouki M., Kaestner A., Carminati A., Drying of mucilage causes water repellency in the rhizosphere of maize: Measurements and modeling, Plant Soil, 2016, Iss. 407, pp. 161–171, DOI: 10.1007/s11104-015-2749-1.

24. Aquino A.J., Tunega D., Pašalić H., Schaumann G.E., Haberhauer G., Gerzabek M.H., Lischka H., Molecular dynamics simulations of water molecule-bridges in polar domains of humic acids, Environmental science & technology, 2011, Vol. 45, Iss. 19, pp. 8411–8419, DOI: 10.1021/es201831g.

25. Bachmann J., Goebel M.-O., Krueger J., Fleige H., Woche S., Dörner J., Horn R., Aggregate stability of south Chilean volcanic ash soils – A combined XPS, contact angle, and surface charge analysis, Geoderma, 2020, Iss. 361, pp. 114022, DOI: 10.1016/j.geoderma.2019.114022.

26. Baldock J.A., Beare M.H., Curtin D., Hawke B. Stocks, Composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy, Soil Research, 2018, Vol. 56(5), pp. 468–480, DOI: 10.1071/SR17221.

27. Balesdent J., The turnover of soil organic fractions estimated by radiocarbon dating, Science of the Total Environment, Vol. 62, pp. 405–408, DOI: 10.1016/0048-9697(87)90528-6.

28. Buyanovsky G.A., Aslam M., Wagner G.H., Carbon turnover in soil physical fractions, Soil Science Society of America Journal, 1994, Vol. 58(4), pp. 1167–1173, DOI: 10.2136/sssaj1994.03615995005800040023x.

29. Campbell C.A., Biederbeck V.O., Zentner R.P., Lafond G.P., Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chernozem, Canadian Journal of Soil Science, 1991, Vol. 71, Iss. 3, pp. 363–376, DOI: 10.4141/cjss91-035.

30. Capriel P., Hydrophobicity of organic matter in arable soils: influence of management, European Journal of Soil Science, 1997, Vol. 48, Iss. 3, pp. 457–462.

31. Chen J., Shang C., Eick M.J., Stewart R.D., Water repellency decreases vapor sorption of clay minerals, Water Resources Research, 2018, Vol. 54, Iss. 9, pp. 6114–6125.

32. Christensen B.T., Physical fractionation of soil and organic matter in primary particle size and density separates, In: Advances in soil science, 1992, pp. 1–90, DOI: 10.1007/978-1-4612-2930-8_1.

33. Chung H., Grove J.H., Six J., Indications for soil carbon saturation in a temperate agroecosystem, Soil Science Society of America Journal, 2008, Vol. 72, Iss. 4, pp. 1132–1139, DOI: 10.2136/sssaj2007.0265.

34. Cihlář Z., Vojtová L., Conte P., Nasir S., Kučerík J., Hydration and water holding properties of cross-linked lignite humic acids, Geoderma, 2014, Vol. 230, pp. 151–160, DOI: 10.1016/j.geoderma.2014.04.018.

35. Curtin D., Beare M.H., Weiwen Q.I.U., Sharp J., Does particulate organic matter fraction meet the criteria for a model soil organic matter pool? Pedosphere, 2019, Vol. 29, Iss. 2, pp. 195–203, DOI: 10.1016/S1002-0160(18)60049-9.

36. Diamantis V., Pagorogon L., Gazani E., Doerr S.H., Pliakas F., Ritsema C.J., Use of olive mill wastewater (OMW) to decrease hydrophobicity in sandy soil, Ecological engineering, 2013, Vol. 58, pp. 393–398.

37. Dungait J.A., Hopkins D.W., Gregory A.S., Whitmore A.P., Soil organic matter turnover is governed by accessibility not recalcitrance, Global Change Biology, 2012, Vol. 18, Iss. 6, pp. 1781–1796, DOI: 10.1111/j.1365-2486.2012.02665.x.

38. Eusterhues K., Rumpel C., Kleber M., Kögel-Knabner I., Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation, Organic Geochemistry, 2003, Vol. 34, Iss. 12, pp. 1591–1600, DOI: 10.1016/j.orggeochem.2003.08.007.

39. Gregorich E.G., Beare M.H., Physically uncomplexed organic matter, Soil sampling and methods of analysis, 2008, pp. 607–616.

40. Gregorich E.G., Beare M.H., McKim U.F., Skjemstad J.O., Chemical and biological characteristics of physically uncomplexed organic matter, Soil Science Society of America Journal, 2006, Vol. 70, Iss. 3, pp. 975–985, DOI: 10.2136/sssaj2005.0116.

41. Kaiser K., Guggenberger G., Mineral surfaces and soil organic matter, European Journal of Soil Science, 2003, Vol. 54, Iss. 2, pp. 219–236.

42. Kraemer F.B., Hallett P.D., Morras H., Garibaldi L., Cosentino D., Duval M., Galantini J., Soil stabilisation by water repellency under no-till management for soils with contrasting mineralogy and carbon quality, Geoderma, 2019, Vol. 355, pp. 1–11, DOI: 10.1016/j.geoderma.2019.113902.

43. Leelamanie D.A.L., Karube J., Yoshida A., Clay effects on the contact angle and water drop penetration time of model soils, Soil Science and Plant Nutrition, 2010, Vol. 56, Iss. 3, pp. 371–375.

44. Moradi A.B., Carminati A., Lamparter A., Woche S.K., Bachmann J., Vetterlein D., Vogel H.J., Oswald S.E., Is the Rhizosphere Temporarily Water Repellent? Vadose Zone Journal, 2012, Vol. 11, Iss. 3, DOI: 10.2136/vzj2011.0120.

45. Shakesby R., Doerr S., Walsh R., The erosional impact of soil hydrophobicity: current problems and future research directions, Journal of hydrology, 2000, Vol. 231, pp. 178–191.

46. Shang J., Flury M., Harsh J.B., Zollars R.L., Comparison of different methods to measure contact angles of soil colloids, Journal of Colloid and Interface Science, 2008, Vol. 328, Iss. 2, pp. 299–307.

47. Šimon T., Javůrek M., Mikanova O., Vach M., The influence of tillage systems on soil organic matter and soil hydrophobicity, Soil and Tillage Research, 2009, Vol. 105, Iss. 1, pp. 44–48.

48. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter: implications for C-saturation of soils, Plant and soil, 2002, Vol. 241, Iss. 2, pp. 155–176.

49. Skjemstad J.O., Spouncer L.R., Cowie B., Swift R.S., Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools, Soil Research, 2004, Vol. 42, Iss. 1, pp. 79–88, DOI: 10.1071/SR03013.

50. Whalen J.K., Bottomley P.J., Myrold D.D., Carbon and nitrogen mineralization from light-and heavy-fraction additions to soil, Soil Biology and Biochemistry, 2000, Vol. 32, Iss. 10, pp. 1345–1352, DOI: 10.1016/S0038-0717(00)00040-7.

51. World Reference Base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps, World Soil Resources Report (106).

52. Zhang G.S., Chan K.Y., Oates A., Heenan D.P., Huang G.B., Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage, Soil and Tillage Research, 2007, Vol. 92, Iss. 1–2, pp. 122–128, DOI: 10.1016/j.still.2006.01.006.

53. Zickenrott I.M., Woche S.K., Bachmann J., Ahmed M.A., Vetterlein D., An efficient method for the collection of root mucilage from different plant species: A case study on the effect of mucilage on soil water repellency, J. Plant Nutr. Soil Sci., 2016, Iss. 179, pp. 294–302, DOI: 10.1002/jpln.201500511.

54. Zimmermann M., Leifeld J. Schmidt M., Smith P., Fuhrer J., Measured soil organic matter fractions can be related to pools in the RothC model, European Journal of Soil Science, 2007, Vol. 58(3), pp. 658–667, DOI: 10.1111/j.1365-2389.2006.00855.x.

55.


Review

For citations:


Matveeva N.V., Milanovsky E.Yu., Rogova O.B. Changes in the hydrophobic-hydrophilic properties of the organic matter of the chernozems of the Kamennaya Steppe. Dokuchaev Soil Bulletin. 2021;(106):49-76. (In Russ.) https://doi.org/10.19047/0136-1694-2021-106-49-76

Views: 746


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)