Preview

Dokuchaev Soil Bulletin

Advanced search

Global climate and soil cover – implications for land use in Russia

https://doi.org/10.19047/0136-1694-2021-107-5-32

Abstract

The necessity of a comprehensive description of greenhouse gas fluxes on different types of soils, the methodology for creating “carbon polygons” and “carbon farms” with the use of modern methods for assessing carbon fluxes in ecosystems, taking into account the specifics of the natural conditions of Russia and competitive advantages, are substantiated. Directions for developing national methods for calculating carbon fluxes are given, which should be subjected to verification by the interested parties of the Paris Agreement adopted by the Russian Federation. Such issues are considered as the role and potential of the Russian soil cover in the carbon balance of the planet, factors of reducing carbon stocks from the upper 1 meter depth layer of the soil, competitive edge in the EU and the Western world in the questions of natural and climatic changes, the use of remote sensing of the Earth from space in order to obtain regular, complete and reliable estimates of the absorption of greenhouse gases. 

About the Authors

A. L. Ivanov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation


I. Yu. Savin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation


V. S. Stolbovoy
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation


A. Yu. Dukhanin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation


D. N. Kozlov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation


I. M. Bamatov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation


References

1. Vasil'ev A.I. et al., Metodika sopostavleniya bazovykh produktov MSS KA “Kanopus-V” i OLI/ETM+ Landsat (Comparison of the basic products of the MSS of the Kanopus-V and OLI/ETM+ Landsat), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 36–48.

2. Ivanov A.L., Stolbovoy V.S., The Initiative “4 per 1000” – a new global challenge for the soils of Russia, Dokuchaev Soil Bulletin, 2019, Vol. 98, pp. 185–202, DOI: 10.19047/0136-1694-2019-98-185-202.

3. Carbon polygons. Ministry of Science and Higher Education of the Russian Federation. URL: https://minobrnauki.gov.ru/action/poligony/index.php?sphrase_id=108077.

4. Krylatov A.K. et al., Dinamika balansa gumusa na pakhotnykh zemlyakh Rossiiskoi Federatsii (Dynamics of the balance of humus on arable lands of the Russian Federation), Moscow: Goskomzem Rossii, 1998, 60 p.

5. National report “Global climate and soil cover in Russia: assessment of risks and ecological and economic consequences of land degradation. Adaptive systems and technologies for rational use of natural resources (agriculture and forestry)”, A.I. Bedritsky (ED.). Moscow: Pochvennyi in-t im. V.V. Dokuchaeva, GEOS, 2018, 357 p.

6. National report “Global climate and soil cover in Russia: desertification and land degradation, institutional, infrastructural, technological adaptation measures (agriculture and forestry)”, R.S.-H. Edelgeriev, Vol. 2, Moscow: Izd-vo MBA, 2019, 476 p.

7. National report “Global climate and soil cover of Russia: manifestations of drought, preventive measures, control, elimination of consequences and adaptation measures (agriculture and forestry)”, R.S.-H. Edelgeriev (Ed.), Vol. 3, Moscow: Izd-vo MBA, 2021, 820 p.

8. Posevnaya ploshchad' ozimykh kul'tur v 2020 godu sostavit poryadka 19 mln ga. Ministerstvo sel'skogo khozyaistva RF (The sown area of winter crops in 2020 will be about 19 million hectares. Ministry of Agriculture of the Russian Federation), URL: https://mcx.gov.ru/press-service/news/posevnaya-ploshchad-ozimykh-kultur-v-2020-godu-sostavit-poryadka-19-mln-ga/.

9. “Rekomendatsii po razvitiyu agropromyshlennogo kompleksa i sel'skikh territorii v Nechernozemnoi zone Rossii do 2030 goda”. Versiya 2.0 (“Recommendations for the development of the agro-industrial complex and rural areas in the Non-Chernozem Zone of Russia until 2030”. Version 2.0), Moscow: OOO “Izdatel'stvo MBA”, 2021, 400 p.

10. Seventh national communication of the Russian Federation submitted in accordance with Articles 4 and 12 of the United Nations Framework Convention on Climate Change and Article 7 of the Kyoto Protocol, Moscow: 2017, 348 p. URL: https://unfccc.int/files/national_reports/annex_i_natcom_/application/pdf/20394615_russian_federation-nc7-1-7nc.pdf.

11. Stolbovoi V.S., Uglerod pakhotnykh pochv Rossii v strategii smyagcheniya izmenenii klimata (Carbon of arable soils in Russia in the climate change mitigation strategy), Sovremennye tendentsii v nauchnom obespechenii APK Verkhnevolzhskogo regiona, 2018, pp. 356–363.

12. Trading Greenhouse Gas Emissions Worldwide: Annual Report 2017. Berlin: ICAP. URL: https://icapcarbonaction.com/en/?option=com_attach&task=download&id=444.

13. Tyurin I.V., Organicheskoe veshchestvo pochv i ego rol' v plodorodii pochv (Soil organic matter and its role in soil fertility), Moscow: Nauka, 1965, 319 p.

14. Filipchuk A.N., Malysheva N.V., Moiseev B.N., Strakhov V.V., Analiticheskii obzor metodik ucheta vybrosov i pogloshcheniya lesami parnikovykh gazov iz atmosfery (), Lesokhoz. inform.: elektron. setevoi zhurn., 2016, No. 3, pp. 36–85, URL: http://lhi.vniilm.ru/.

15. FAO/IIASA/ISRIC/ISS-CAS/JRC, Harmonized World Soil Database (version 1.2), FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012.

16. Iizuka K., Tateishi R., Estimation of CO2 Sequestration by the Forests in Japan by Discriminating Precise Tree Age Category using Remote Sensing Techniques, Remote Sensing, 2015, Vol. 7, Iss. 11, 15082–15113, DOI: 10.3390/rs71115082.

17. Hengl T., Mendes de Jesus J., Heuvelink GBM, Ruiperez Gonzalez M., Kilibarda M., Blagotić A. et al., Soil Grids 250 m: Global gridded soil information based on machine learning, PLoS ONE, 2017, Vol. 12, Iss. 2, e0169748, DOI: 10.1371/journal.pone.0169748.

18. IPCC. Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use, Geneva, 2006, URL: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html.

19. Ivanov A., Stolbovoy V., Petrosian R., The Initiative of 4 ‰ in perspective from Russia, In: Food security and climate change: 4 per 1000 initiative new tangible global challenges for the soil, Poitiers (France), 2019, 46 p., URL: https://symposium.inra.fr/4p1000.

20. Lugato E., Ctscatti A., Jones A., Ceccherini G., Duveiller G., Maximising climate mitigation potential by carbon and radiative agricultural land management with cover crops, Environmental Research Letters, 2020, Vol. 15, No. 9, 094075, DOI: 10.1088/1748-9326/aba137.

21. Nelson D.W., Sommers L.E., Total carbon, organic carbon and organic matter, In: Methods of soil analysis, Part 2, Chemical and Microbiological Properties, 1982, pp. 539–579.

22. Nilsson S., Shvidenko A., Stolbovoi V., Gluck M., Jonas M., Obersteiner M., Full Carbon Account for Russia, Interim Report. IR-00–021, Laxenburg, IIASA, 2000, 180 р.

23. Sanderman J., Hengl T., Fiske G.J., Soil carbon debt of 12,000 years of human land use, PNAS, 2017, Vol. 114 (36), 9575–580, DOI: https://doi.org/10.1073/pnas.1706103114.

24. Sanga-Ngoie K., Iizuka K., Kobayashi S., Estimating CO2 sequestration by forests in Oita Prefecture, Japan, by combining Landsat ETM+ and ALOS satellite remote sensing data, Remote Sensing, 2012, Vol. 4, Iss. 11, pp. 3544–3570, DOI: 10.3390/rs4113544.

25. Savin I., Stolbovoy V., Soils of Russia – GlobalSoilMap Perspective. Proc. GlobalSoilMap: Basis of the Global Spatial Soil Information System – Proc. of the 1st GlobalSoilMap Conference, 2014, pp. 47–50.

26. Schlesinger W., Carbon Sequestration in Soils, Science, 1999, Vol. 284, Iss. 5423, 137 p.

27. Stolbovoi V.I., McCallum I., Land Resources of Russia, Laxenburg, IIASA, RAS, 2002, URL: http://www.iiasa.ac.at/Research/FOR/russia_cd/lcov_des.htm.

28. Theodora A., Nikolas T., Athanasios B., Remote Sensing Techniques for soil Organic Carbon Estimation: A Review, Remote Sensing, 2019, Vol. 11, Iss. 6, 676, DOI: 10.3390/rs11060676.

29. Turner D.P., Ritts W.D., Cohen W.B., Gower S.T., Running, S.W., Zhao M., Costa M.H., Kirschbaum A.A., Ham J.M., Saleska S.R. et al., Evaluation of MODIS NPP and GPP products across multiple biomes, Remote Sens. Environ., 2006, Vol. 102, pp. 282–292.

30. USGS, Landsat Science Products, URL: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-science-products?qt-science_support_page_related_con=2#qt-science_support_page_related_con.

31. Wang J., Li C., Adaptively weighted decision fusion in 30 m land-cover mapping with Landsat and MODIS data, International Journal of Remote Sensing, 2015, Vol. 36, Iss. 14, pp. 3659–3674.

32.


Review

For citations:


Ivanov A.L., Savin I.Yu., Stolbovoy V.S., Dukhanin A.Yu., Kozlov D.N., Bamatov I.M. Global climate and soil cover – implications for land use in Russia. Dokuchaev Soil Bulletin. 2021;(107):5-32. (In Russ.) https://doi.org/10.19047/0136-1694-2021-107-5-32

Views: 1670


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)