On optimizing the deployment of an internet of things sensor network for soil and crop monitoring on arable plots
https://doi.org/10.19047/0136-1694-2022-110-22-50
Abstract
One of the main stream of digitalization in agriculture is the introduction of Internet of Things technologies, which is expressed in the creation and use of specialized sensors that are placed in the fields. The placement of such sensors within agricultural plot should make it possible to characterize all the microvariability of soil fertility parameters in the field. That is, their number and spatial location should be optimal, on the one hand, in terms of costs of their acquisition and operation, and, on the other hand, in terms of accuracy of interpolation of data obtained with their help to the entire plot. It has been shown that the use of crop condition maps obtained on the basis of satellite data and the separation based on them of management zones can lead to significant errors in the interpolation of monitoring results, obtained in separate points, on the whole plot. An approach for optimization of sensor placement is proposed based on the use of soil fertility mapping, which is the result of refinement, updating and clarification of traditionally drawn soil maps on the basis of high spatial resolution remote sensing data. The possibilities of using the approach are demonstrated by the example of a test plot in Leningrad region of Russia.
Keywords
About the Authors
I. Yu. SavinRussian Federation
Yu. I. Blokhin
Russian Federation
References
1. Vedomstvennyj proekt “Cifrovoe sel'skoe hozyajstvo”: oficial'noe izdanie (Departmental project “Digital Agriculture”: official publication), Moscow: FGBNU “Rosinformagrotekh”, 2019, 48 p.
2. Zhelezova S.V., Nauchno-metodicheskoe obosnovanie tekhnologij tochnogo i resursosberegayushchego zemledeliya dlya zernovyh kul'tur v Nechernozemnoj zone RF: Diss. … dokt. s.-kh. nauk (Scientific and methodological substantiation of precision and resource-saving farming technologies for grain crops in the Non-Chernozem zone of the Russian Federation: Dr. agric. sci. thesis), Moscow: RGAU-MSKHA im. K.A. Timiryazeva, 2020. 415 p.
3. Ivanov A.L., Kozubenko I.S., Savin I.Yu., Kiryushin V.I., Cifrovoe zemledelie (Digital agriculture), Vestnik rossijskoj sel'skohozyajstvennoj nauki, 2018, No. 5, pp. 4–9.
4. Savin I.Yu., The Classification of Soils and Agriculture, Dokuchaev Soil Bulletin, 2016, Vol. 84, pp. 3–9, DOI: 10.19047/0136-1694-2016-84-3-9.
5. Savin I. Yu., Savenkova E.V., Kucher D.E., Tutukova D.A., Berbekov S.A., Ocenka kontrastnosti pochvennogo pokrova pahotnyh ugodij po sputnikovym dannym Sentinel-2 (Estimation of soil cover contrast in arable lands using Sentinel-2 satellite data), Pochvovedenie, 2021, No. 11, pp. 1295–1305.
6. Savin I.Yu., Shishkonakova E.A., Prudnikova E.Yu., Vindeker G.V., Grubina P.G., Sharychev D.V., Shchepot'ev V.N., Vernyuk Yu.I., Zhogolev A.V., O vliyanii zasorennosti posevov ozimoj pshenicy na ih spektral'nuyu otrazhatel'nuyu sposobnost' (On the influence of weed infestation of winter wheat crops on their spectral reflectivity), In: Sel'skohozyajstvennaya biologiya (Agricultural biology), 2020, Vol. 55, No. 1, pp. 53–65.
7. Fridland V.M., Struktura pochvennogo pokrova (The structure of the soil cover), Moscow: Mysl', 1972, 424 p.
8. Atzberger C., Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs, Remote Sensing, 2013, Vol. 5(2), pp. 949–981, DOI: 10.3390/rs5020949.
9. Borrero J.D., Zabalo A., An autonomous wireless device for real-time monitoring of water needs, Sensors (Switzerland), 2020, Vol. 20(7), 2078.
10. Brummel D., Delineation of NDVI-based soil management zones: Applications of UAS technology, Graduate Theses and Dissertations, 2019, 16977. URL: https://lib.dr.iastate.edu/etd/16977.
11. Chepuri S.P., Leus G., Continuous sensor placement, IEEE Signal Process. Lett., 2015, Vol. 22, No. 5, pp. 544–548.
12. Cohen K., Seigel S., McLaughlin T., A heuristic approach to effective sensor placement for modelling a cylindrical wake, Comput. Fluids, 2006, Vol. 35, No. 1, pp. 103–120.
13. Corti M., Marino Gallina P., Cavalli D., Ortuani B., Cabassi G., Cola G., Vigoni A., Degano L., Bregaglio S., Evaluation of In-Season Management Zones from High-Resolution Soil and Plant Sensors, Agronomy, 2020, Vol. 10, 1124, DOI: 10.3390/agronomy10081124.
14. E-agriculture in action, Bangkok: FAO-ITU, 2017, 118 p.
15. Elijah O., Rahman T.A., Orikumhi I., Leow C.Y., Hindia M.N., An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges, IEEE Internet of Things Journal, 2018, Vol. 5, No. 5, pp. 3758–3773, DOI: 10.1109/JIOT.2018.2844296.
16. Gupta H.P., Tyagi P.K., Singh M.P., Regular node deployment for coverage in connected wireless networks, IEEE Sensors Journal, 2015, Vol. 15, No. 12, pp. 7126–7134.
17. ILWIS software. URL: https://www.itc.nl/ilwis/.
18. Jamali-Rad H., Seimonetto A., Leus G., Sparsity-aware sensor selection: Centralized and distributed algorithms, IEEE Signal Process. Lett., 2014, Vol. 21, No. 2, pp. 217–220.
19. Jiang C., Soh Y.C., Li H., Sensor placement by maximal projection on minimum eigenspace for linear inverse problems, IEEE Trans. Signal Process., 2016, Vol. 64, No. 21, pp. 5595–5610.
20. Kaiwartya O., Abdullah A., Cao Y., Rao R.S., Kumar S., Lobiyal D.K., Isnin I.F., Liu X., Shah R.R., T-MQM: Testbed Based Multi-Metric Quality Measurement of Sensor Deployment for Precision Agriculture-A Case Study, IEEE Sensors Journal, 2016, Vol. 16 (23), pp. 8649–8664, DOI: 10.1109/jsen.2016.2614748.
21. Maloku D., Balogh P., Bai A., Gabnai Z., Lengyel P., Trends in scientific research on precision farming in agriculture using science mapping method, International Review of Applied Sciences and Engineering IRASE, 2020, Vol. 11 (3), pp. 232–242, DOI: 10.1556/1848.2020.00086.
22. Manohar K., Brunton B.N., Kutz J.N., Brunton S.L., Data-driven sparse sensor placement for reconstruction, IEEE Control Syst. Mag., 2018, Vol. 38, No. 3, pp. 63–86.
23. Morais R., Mendes J., Silva R., Silva N., Sousa J., Peres E.A., Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices, Agriculture, 2021, Vol. 11, 619.
24. Naeem M., Xue S., Lee D., Cross-entropy optimization for sensor selection problems, Proc. 9th Int. Symp. Commun. Inf. Technol., 2009, pp. 396–401.
25. Patrício D.I., Rieder R., Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic re-view, Comput. Electron. Agric., 2018, Vol. 153, pp. 69–81.
26. Placidi P., Morbidelli R., Fortunati D., Papini N., Gobbi F., Scorzoni A., Monitoring Soil and Ambient Parameters in the IoT Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors, Sensors, 2021, Vol. 21, 5110, DOI: 10.3390/s21155110.
27. Prudnikova E., Savin I., Vindeker G., Grubina P., Shishkonakova E., Sharychev D., Influence of Soil Background on Spectral Reflectance of Winter Wheat Crop Canopy, Remote Sens., 2019, Vol. 11, 1932, DOI: 10.3390/rs11161932.
28. Rebai M., Snoussi H., Hnaien F., Khoukhi L., Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks, Comput. Oper. Res., 2015, Vol. 59, pp. 11–21.
29. Sakai K., Sun M.T., Ku W.S., Lai T.H., Vasilakos A.V., A framework for the optimal k-coverage deployment patterns of wireless sensors, IEEE Sensors Journal, 2015, Vol. 15, No. 12, pp. 7273–7283.
30. Savin I.Yu., The scale problem in modern soil mapping, Dokuchaev Soil Bulletin, 2019, Vol. 97, pp. 5–20, DOI: 10.19047/0136-1694-2019-97-5-20.
31. Shafi U., Mumtaz R., García-Nieto J., Hassan S.A., Zaidi S.A.R., Iqbal N. Precision Agriculture Techniques and Practices: From Considerations to Applications, Sensors, 2019, Vol. 19, 3796.
32. Shamiah M., Banarjee S., Vikalo H., Greedy sensor selection: Leveraging submodularity, Proc. 49th IEEE Conf. Decis. Control., 2010, pp. 2572–2577.
33. Shen X., Varshney P.K., Sensor selection based on generalized information gain for target tracking in large sensor networks, IEEE Trans. Signal Process., 2014, Vol. 62, No. 2, pp. 363–375.
34. STEP software. URL: https://step.esa.int/main/toolboxes/snap/.
35. University of Nebraska information letter. URL: https://cropwatch.unl.edu/documents/On-the-Go%20Vehicle-Based%20Soil%20Sensors%20-%20EC178.pdf.
36. Visalini K., Subathra B., Srinivasan S., Palmieri G., Bekiroglu K., Thiyaku S., Sensor Placement Algorithm with Range Constraints for Precision Agriculture, IEEE Aerospace and Electronic Systems Magazine, 2019, Vol. 34(6), pp. 4–15, DOI: 10.1109/maes.2019.2921177.
37. Viscarra Rossel R.A., Bouma J., Soil sensing: A new paradigm for agriculture, Agricultural Systems, 2016, Vol. 148, pp. 71–74, DOI: 10.1016/j.agsy.2016.07.001.
38.
Review
For citations:
Savin I.Yu., Blokhin Yu.I. On optimizing the deployment of an internet of things sensor network for soil and crop monitoring on arable plots. Dokuchaev Soil Bulletin. 2022;(110):22-50. (In Russ.) https://doi.org/10.19047/0136-1694-2022-110-22-50