Climate warming impact on the carbon balance in forest soils in Russia
https://doi.org/10.19047/0136-1694-2022-111-5-29
Abstract
The carbon balance in forest soils (CBFS) was studied on the basis of the geostatistical process model “BIGIN” (Biosphere Greenhousegas Inventory). Warming in boreal forests in the baseline period (1990 ± 5 yr.) initiates a shift in the CBFS towards its decrease, i. e. CO2 source. In the horizon “O”, the decrease in the CBFS is minus 101.4 MtC. The warming of the climate by 1.5 °C and 3 °C will cause a further decrease in the CBFS by 345.7 MtC and 691.4 MtC, respectively. In moderately warm forests, climate warming initiates the formation of a positive CBFS, i. e. CO2 sink. In the horizon “O” of the soils of moderately warm forests, climate warming in the baseline period and in the future leads to the development of positive CBFS, i. e. CO2 sink of 62.4 MtC, 212.8 MtC and 425.4 MtC, respectively. Positive changes in the CBFS in boreal and moderately warm forests in the studied range of climatic temperatures were noted in the horizon “A1” (7.3 MtC, 24.9 MtC and 49.8 MtC) and the horizon “Bh” (14.1 MtC, 48.0 MtC, 96.2 MtC). Climate warming initiates a total negative CBFS (minus 17.6 MtC). Further warming of the climate by 1.5 °C and 3.0 °C will lead to a decrease in the CBFS by minus 60.0 MtC and minus 120.0 MtC. In terms of CO2-equivalent, this will amount to 4%, 13% and 27% of the total country annual emission in 2020. Negative CBFS is not an indicator of emission strengthening. The final conclusion about CO2 source/sink can be made only when analyzing the forest ecosystem when conducting a coupled soil-stand analysis. The error in the estimation of the CBFS in the soil organic profile in the baseline period is ± 23.0 MtC at a confidence level of P = 0.67 and ± 47 MtC at a confidence level of P = 0.95. With an increase in temperature by 1.5 °C, the error will be ± 80.0 MtC and ± 160.0 MtC at confidence levels of P = 0.67 and P = 0.95 respectively. The magnitude of the error will be ± 160.0 MtC and ± 320.0 MtC at confidence levels P = 0.67 and P = 0.95 respectively with an increase in temperature by 3.0 °C.
About the Author
V. S. StolbovoyRussian Federation
References
1. Bazilevich N.I., Biologicheskaya produktivnost' ekosistem Severnoi Evrazii (Biological productivity of ecosystems of Northern Eurasia), Moscow: Nauka, 1993, 293 p.
2. Bobkova K.S., Mashika A.V., Smagin A.V., Dinamika soderzhanija ugleroda organicheskogo veshhestva v srednetaezhnyh el'nikah na avtomorfnyh pochvah (Dynamics of carbon content of organic matter in middle taiga spruce forests on automorphic soils), St. Petersburg: Nauka, 2014, 270 p.
3. Glazovskaya M.A, Pedolitogenez i kontinental'nye tsikly ugleroda (Pedolithogenesis and continental carbon cycles), Moscow: izd-vo “Librkom”, 336 p.
4. Gosudarstvennyj doklad o sostojanii i ohrane okruzhajushhej sredy Rossijskoj Federacii v 2013 godu (State report on the state and protection of the environment of the Russian Federation in 2013), URL: http://www.ecogosdoklad.ru/.
5. Edinyi gosudarstvennyi reestr pochvennykh resursov Rossii. Versiya 1.0 (Unified State Register of Soil Resources of Russia. Version 1.0), Moscow: Pochvennyi institut im. V.V. Dokuchaeva, 2014, 768 p.
6. Zaidel'man F.R., Melioratsiya zabolochennykh pochv Nechernozemnoi zony RSFSR (Reclamation of waterlogged soils of the Nonchernozem zone of the RSFSR), Moscow: Izd-vo Kolos, 1981, 168 p.
7. Zamolodchikov D.G., Korovin G.N., Gitarskii M.L., Byudzhet ugleroda upravlyaemykh lesov Rossiiskoi Federatsii (Carbon budget of managed forests in the Russian Federation), Lesovedenie, 2007, No. 6, pp. 23–34.
8. Klassifikatsiya i diagnostika pochv SSSR (Classification and diagnostics of soils of the USSR), Moscow: Izd-vo Kolos, 1977, 224 p.
9. Komarov A.S., Khoras'kina Yu.S., Bykhovets S.S., Bezrukova M.G., Chertov O.G., Modelirovanie dinamiki organicheskogo veshchestva i elementov pochvennogo pitaniya v mineral'noi pochve i lesnoi podstilke (Modeling the dynamics of organic matter and soil nutrition elements in mineral soil and forest litter), Matematicheskaya biologiya i bioinformatika, 2012, Vol. 7, No. 1, pp. 162–176, URL: http://www.matbio.org/2012/Komarov2012(7_162).
10. Kudeyarov V.N., Vklad pochvy v balans CO2 atmosfery (Contribution of soil to atmospheric CO2 balance), Dokl. RAN, Vol. 375, No. 2, pp. 275–277.
11. Lesnoi kodeks Rossiiskoi Federatsii ot 04.12.2006 N 200-FZ (red. ot 21.07.2014)(s izm. i dop., vstup. v silu s 01.03.2015) (Forest Code of the Russian Federation of December 4, 2006 N 200-FZ (as amended on July 21, 2014) (as amended and supplemented, effective from March 1, 2015)), URL: http://leskod.ru.
12. Edel'geriev R.S.-Kh. (Ed.), Natsional'nyi doklad “Global'nyi klimat i pochvennyi pokrov Rossii: opustynivanie i degradatsiya zemel', institutsional'nye, infrastrukturnye, tekhnologicheskie mery adaptatsii (sel'skoe i lesnoe khozyaistvo)” (National report “Global climate and soil cover in Russia: desertification and land degradation, institutional, infrastructural, technological adaptation measures (agriculture and forestry)”), Vol. 2, Moscow: OOO “Izdatel'stvo MVA”, 2019, 476 p.
13. Ponomareva V.V., Plotnikova N.S., Zakonomernosti migratsii i akkumulyatsii elementov v podzolistykh pochvakh (lizimetricheskie izmereniya) (Patterns of migration and accumulation of elements in podzolic soils (lysimetric measurements), In: Biogeokhimicheskie protsessy v podzolistykh pochvakh (Biogeochemical processes in podzolic soils), Leningrad: Nauka. Leningr. Otdelengie, 1972, pp. 6–65.
14. Romankevich E.A., Vetrov A.A., Tsikl ugleroda v Arkticheskikh moryakh Rossii (The carbon cycle in the Arctic seas of Russia), Moscow: Nauka, 2001, 302 p.
15. List of countries by CO2 emission, URL: https://ru.wikipedia.org/wiki/Список_стран_по_эмиссии_СО2.
16. Stolbovoi V.S., Edinyi gosudarstvennyi reestr lesnykh pochv Rossii (Unified State Register of Forest Soils of Russia.), Izvestiya RAN, seriya Geograficheskaya, 2018, No. 6, pp. 102–109.
17. Stolbovoi V.S., Nil'son S., Shvidenko A.Z., MakKallum I., Opyt agregirovannoi otsenki osnovnykh pokazatelei bioproduktsionnogo protsessa i uglerodnogo byudzheta nazemnykh ekosistem Rossii. Chast' 3. Biogeokhimicheskie potoki ugleroda (Aggregated assessment of the main indicators of the bioproduction process and the carbon budget of terrestrial ecosystems in Russia. Part 3. Biogeochemical carbon fluxes), Ekologiya, 2004, No. 3, pp. 179–184.
18. Fridland V.M., Osnovnye printsipy i elementy bazovoi klassifikatsii pochv, i programma rabot po ee sozdaniyu (Basic principles and elements of the basic classification of soils, and a work program for its creation), Moscow: VASKhNIL, 1982, 151 p.
19. Shvidenko A.Z., Shchepashchenko D.G., Uglerodnyi byudzhet lesov Rossii (Carbon budget of Russian forests), Sibirskii lesnoi zhurnal, 2014, No. 1, pp. 69–92.
20. Kramer J.R., Old sediment carbon in global budgets, In: Soil responses to climate change. NATO ASI Series. Series I: Global Environment Change, Rounsevell M.D.A., P.J. Loveland (Eds), Springer-Verlag Berlin Heidelberg, 2014, Vol. 23, pp. 169–186.
21. Nilsson S., Shvidenko A., Stolbovoi V., Gluck M., Jonas M., Obersteiner M., Full carbon account for Russia, Interim Report IR-00-021, Austria: Laxenburg, 2000, 180 p.
22. Nilsson S., Jonas M., Stolbovoi V., Shvidenko A., Obersteiner M., McCallum I., The Missing “Missing Sink”, Forestry Chronicle, 2003, Vol. 79, pp. 1071–1074.
23. Stevenson F.J., Humus chemistry: genesis, composition, reactions, New York: John Wiley & Sons, 1994, 281 p.
24. Stolbovoi V., Soil Carbon in the Forests of Russia, Mitigation and Adaptation Strategies for Global Change, 2006, Vol. 11, pp. 203–222.
25. Stolbovoi V., Carbon Pools in Tundra Soils of Russia: Improving Data Reliability, In: Global Climate Change and Cold Regions Ecosystems, Lal R., Kimble J.M., Stewart B.A. (Eds), Boca Raton: CRC Press LLC, 2000, pp. 39–58.
26. Stolbovoi V., McCallum I., Land resources of Russia. CD-ROM. IIASA. Moscow, Laxenburg, Austria and the Russian Academy of Sciences, 2002, URL: http://www.iiasa.ac.at/Research/FOR/russia_cd/index.htm.
27. Stolbovoi V., Carbon in Russian soils, Climatic Change, 2002, Vol. 55, Iss. 1–2, pp. 131–156.
28. Stolbovoy V., Ivanov A., Carbon Balance in Soils of Northern Eurasia, In: Soil Carbon. Progress in Soil Science, A.E. Hartemink, K. McSweeney (Eds), 2014, pp. 381–391, DOI 10.1007/978-3-319-04084-4_38.
29. The Fifth National Communication of Russian Federation: 2010, URL: http://unfccc.int/resource/docs/natc/rus_nc5_resubmit.pdf.
30. Thurman E.M., Humic substances in groundwater, In: Humic substances in Soil, Sediment and Water: Geochemistry, Izolation and Characterization, Alken G.R., Mcknight D.M., Wershaw R.L., Maccarthy P. (Eds), New York: John Wiley & Sons, 1985, pp. 87–104.
31. UN World Meteorological Organization. URL: https://public.wmo.int/en/our-mandate.
32.
Review
For citations:
Stolbovoy V.S. Climate warming impact on the carbon balance in forest soils in Russia. Dokuchaev Soil Bulletin. 2022;(111):5-29. (In Russ.) https://doi.org/10.19047/0136-1694-2022-111-5-29