Preview

Dokuchaev Soil Bulletin

Advanced search

Peculiarities of spectral reflectance of fractions with sizes from 20 to 5,000 microns in soil samples

https://doi.org/10.19047/0136-1694-2022-112-24-47

Abstract

By the example of arable horizon samples taken from three soil types (sod-podzolic, gray forest, and leached chernozem) the peculiarities of electromagnetic waves reflection from their different particle size fractions were studied. The extraction of fractions by dry sieving was carried out using Retsch AS 200 BASIC equipment. As a result, 14 fractions ranging in size from less than 20 microns to more than 5,000 microns were isolated. Spectral reflectance was determined for each fraction and for the soil sample before sieving in the electromagnetic wave range from 350 to 2,500 nm using a SR-6500 field spectroradiometer (Spectral Evolution, USA). Analysis of similarities and differences in the obtained spectral reflectance curves of individual fractions was carried out using their visual analysis, the method of similarity dendrogram construction, as well as regression analysis between light reflectance and fraction particle size. It was confirmed that at a more detailed level of analysis compared to the one carried out by other researchers earlier, the general patterns of light reflectance of the samples do not change. A higher reflection of waves by thinner fractions and a lower reflection by more coarse fractions are observed. At the same time, spectral reflection curves for individual fractions are out of the general pattern, the level of intensity of local extremes of the curves’ changes. This confirms the difference of the material composition, which forms the color of soils, of these fractions from others. The color of the mixed sample is a spectral mixture of colors of its separate fractions. Presumably, this is the main reason for such a phenomenon as change of spectral reflectivity of open surface of soils under the influence of atmospheric precipitation.

About the Authors

I. Yu. Savin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”; Belgorod Federal University
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017
85 Pobedy Str., Belgorod 308015



M. A. Shishkin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



D. V. Sharychev
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



References

1. Vindeker G.V., Prudnikova E.Yu., Savin I.Yu., Transformatsiya otkrytoi poverkhnosti pochv pod vozdeistviem osadkov v model'nom eksperimente, (Transformation of Open Soil Surface Udner the Impact of Rainfall in Model Experiment), Dokuchaev Soil Bulletin, 2018, Vol. 95, pp. 23–40, DOI: 10.19047/0136-1694-2018-95-23-40.

2. Drobysh S.V., Bubnova T.V., Matychenkova O.V., Spektral'naya otrazhatel'naya sposobnost' agrodernovo-podzolistykh pochv v zavisimosti ot granulometricheskogo sostava (Impact texture on the spectral reflectivity of agro-sod-podzolic soils), Soil Science and Agrochemistry, 2013, Vol. 1, pp. 126–132.

3. Zakharov S.A., Kurs pochvovedeniya (A Course of Soil Science), Moscow: Selkohozgiz, 1931, 550 p.

4. Karavanova E.I., Opticheskie svoistva pochv i ikh priroda (Optical Properties of Soils and Their Nature), Moscow: Izd-vo Mosk. un-ta, 2003, 152 p.

5. Karmanov I.I., Spektral'naya otrazhayushchaya sposobnost' i tsvet pochv, kak pokazateli ikh svoistv (Spectral Reflectivity and Color of Soils as Indicators of Their Properties), Moscow: Kolos, 1974, 351 p.

6. Klassifikatsiya i diagnostika pochv Rossii (Сlassification And Diagnostics of Russian Soils), Smolensk: Oikumena, 2004, 342 p.

7. Klassifikatsiya i diagnostika pochv SSSR (Classification and Diagnostics of USSR Soils), Moscow: Kolos, 1977, 224 p.

8. Mikhailova N.A., Orlov D.S., Opticheskie svoistva pochv i pochvennykh komponentov (Optical Properties of Soils and Soil Components), Moscow: Nauka, 1986, 119 p.

9. Prudnikova E.Yu., Savin I.Yu., Lebedeva M.P., Volkov D.S., Rogova O.B., Varlamov E.B., Abrosimov K.N., Transformatsiya poverkhnostnogo sloya pakhotnogo gorizonta pochv pod vliyaniem atmosfernykh osadkov (Transfornation of Surface Layer of Ploughed Soil Horizon Under the Impact of Atmospheric Precipitation), Pochvovedenie, 2021, No. 11, pp. 1407–1420.

10. Savin I.Yu., Vliyanie livnevogo dozhdya na integral'nuyu otrazhatel'nuyu sposobnost' poverkhnosti chernozemnykh pochv (The influence of heavy rainfall on the integral surface reflectance of chernozem soil), Pochvovedenie, 1995, No. 8, pp. 976–980.

11. Savin I.Yu. Zhogolev A.V., Prudnikova E.Yu., Sovremennye trendy i problemy pochvennoi kartografii (Modern trends and problems of soil mapping), Pochvovedenie, 2019, No. 5, pp. 517–528.

12. Bänninger D., Lehmann P., Flühler H. Modelling the effect of particle size, shape and orientation of light transfer through porous media // Eur. J. Soil Sci. 2006. Vol. 57 (6). P. 906–915.

13. Ben-Dor E., Irons J.R., Epema G.F. Soil reflectance // Remote sensing for the Earth sciences: Manual of remote sensing 3/3 / (Ed.) A.N. Rencz. 1999. P. 111–188.

14. Bowers S.A., Hanks R.J. Reflection of radiant energy from soils // Soil Sci. 1965. Vol. 100(2). P. 130–138.

15. Chabrillat S., Ben-Dor E., Cierniewski J. Imaging spectroscopy for soil mapping and monitoring // Surv. Geophys. 2019. Vol. 40. P. 361–399. DOI: 10.1007/s10712-019-09524-0.

16. Demattê J.A.M., Dotto A.C., Paiva A.F.S. The Brazilian Soil Spectral Library (BSSL): a general view, application and challenges // Geoderma. 2019. Vol. 354. 113793.

17. FAO. A primer on soil analysis using visible and near-infrared (vis-NIR) and mid-infrared (MIR) spectroscopy. Rome: FAO. 2022. 28 p. DOI: 10.4060/cb9005en.

18. Francos N., Ogen Y., Ben-Dor E. Spectral assessment of organic matter with different composition using reflectance spectroscopy // Remote Sens. 2021. Vol. 13. 1549. DOI: 10.3390/rs13081549.

19. Handbook of soil terminology, correlation and classification / P. Krasilnikov, J.J.I. Marti, R. Arnold, S. Shoba (Eds). London: Taylor&Francis Group. 2009. 448 p. DOI: 10.4324/9781849774352.

20. Isbell R. The Australian soil classification. Melbourne: CSIRO Publishing, 2021. 192 p.

21. Kirillova N.P., Khomiakov D.M., Karavanova E.I., Azikov D.A., Zhulidova D.A. Soil spectral databases // Moscow Univ. Soil Sci. Bull. 2021. Vol. 76. P. 54–59. DOI: 10.3103/S0147687421020034.

22. Mancini M., Weindorf D.C., Monteiro M.E.C., de Faria A.G., Teixeira A.F.S., de Lima W., de Lima F.R.D., Dijair T.S.B., Marques F.D., Ribeiro D., Silva S.H.G., Chakraborty S., Curi N. From sensor data to Munsell color system: Machine learning algorithm applied to tropical soil color classification via Nix™ Pro sensor // Geoderma. 2020. Vol. 375. 114471. DOI: 10.1016/j.geoderma.2020.114471.

23. Munsell soil color charts. URL: https://munsell.com/color-products/color-communications-products/environmental-color-communication/munsell-soil-color-charts/https://munsell.com/color-products/color-communications-products/environmental-color-communication/munsell-soil-color-charts/.

24. Ovchinnikova M.F. Changes in the content, composition, and properties of humic substances in particle-size fractions of soddy-podzolic soils under the impact of long-term drainage // Eurasian Soil Sc. 2018. Vol. 51. P. 647–657. DOI: 10.1134/S1064229318060121.

25. Prudnikova E.Yu., Savin I.Yu. Some peculiarities of arable soil organic matter detection using optical remote sensing data // Remote Sensing. 2021. Vol. 13(12). 2313. DOI: 10.3390/rs13122313.

26. Sadeghi M., Babaeian E., Tuller M., Jones S. Particle size effects on soil reflectance explained by an analytical radiative transfer model // Remote Sensing of Environment. 2018. 210. DOI: 10.1016/j.rse.2018.03.028.

27. Sahwan W., Lucke B., Sprafke T., Vanselow K.A., Bäumler R. Relationships between spectral features, iron oxides and colours of surface soils in northern Jordan // Eur. J. Soil. Sci. 2021. Vol. 72. P. 80–97. DOI: 10.1111/ejss.12986.

28. Samonova O.A., Aseyeva E.N., Kasimov N.S. Distribution of metals in the granulometric fractions of a balka soil-geochemical system (south-eastern part of the Smolensk-Moscow upland) // Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2018. Vol. 6. P. 34–46.

29. Savin I.Yu. Prudnikova E.Yu., Vasilyeva N.A., Veretelnikova I.V., Bairamov A.N. The color of soils as a basis for proximal sensing of their composition // Dokuchaev Soil Bulletin. 2016. Vol. 86. P. 46–52. DOI: 10.19047/0136-1694-2016-86-46-52.

30. Uziak S., Brogowski Z., Komornicki T. Properties of soil granulometric fractions formed from different parent material // Acta Agroph. 2005. Vol. 7(124). P. 1–159.

31. Viscarra Rossel R.A., Adamchuk V.I., Sudduth K.A., McKenzie N.J., Lobsey C. Chapter Five – Proximal soil sensing: An effective approach for soil measurements in space and time // Advances in Agronomy / (Ed.) Donald L. Sparks. Academic Press. 2011. Vol. 113. P. 243–291.

32. Viscarra Rossel R.A., Behrens T., Ben-Dor E. A global spectral library to characterize the world’s soil // Earth Sci. Rev. 2016. Vol. 155. P. 198–230.

33. World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World soil resources reports 106. FAO: Rome, 2015. 203 p.

34. Zhang X., Huang B. Prediction of soil salinity with soil-reflected spectra: A comparison of two regression methods // Sci Rep. 2019. Vol. 9. 5067. DOI: 10.1038/s41598-019-41470-0.


Review

For citations:


Savin I.Yu., Shishkin M.A., Sharychev D.V. Peculiarities of spectral reflectance of fractions with sizes from 20 to 5,000 microns in soil samples. Dokuchaev Soil Bulletin. 2022;(112):24-47. (In Russ.) https://doi.org/10.19047/0136-1694-2022-112-24-47

Views: 621


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)