Carbon leaching from peat soils of the north of Western Siberia under different hydrological conditions
https://doi.org/10.19047/0136-1694-2024-119-211-241
Abstract
Frozen peat soils in the north of Western Siberia are vulnerable to the on-going climate changes. The increase in temperature which affects the permafrost thaw returns the huge carbon stocks to the global element cycle. Its export in the form of dissolved organic matter from peatlands is determined by a number of factors, among which hydrological conditions are the least studied. The influence of hydrological regimes on carbon export from oligotrophic peat soils in discontinuous permafrost zone was investigated in laboratory conditions. The model column experiment allowed estimating the carbon yield from undisturbed (monolithic) peat samples of different degrees of decomposition. Three types of mesocosms were considered: undisturbed samples of the TO horizon, as well as the TO horizon with underlying material of different texture (sand and loam). The concentration of dissolved organic carbon in the lysimetric waters of a fibric peat does not differ for the “precipitation” and “snowmelt” simulating modes, and in the “stagnation” mode it is 1.4 times less. Sapric peat lysimetric waters show no differences under simulating hydrological regimes. The total export of organic carbon for three successive extractions for fibric peat is 32% higher than for sapric peat. An increase in carbon in the sandy material after three cycles of the experiment was revealed, the loamy material did not show significant differences. The carbon adsorption by mineral soil layers of the study area can be a protective mechanism that prevents increased runoff from the soils.
About the Authors
M. V. TimofeevaRussian Federation
O. Yu. Goncharova
Russian Federation
G. V. Matyshak
Russian Federation
S. D. Bochkova
Russian Federation
M. S. Kadulin
Russian Federation
References
1. Bazin E.T., Kopenkin V.D., Kosov V.I., Korchunov S.S., Petrovich V.M., Tekhnicheskii analiz torfa (Technical analysis of peat), Moscow: Nedra, 1992. 431 p.
2. Vasil'ev A.A., Gravis A.G., Gubar'kov A.A., Drozdov D.S., Korostelev Yu.V., Malkova G.V., Oblogov G.E., Ponomareva O.E., Sadurtdinov M.R., Streletskaya I.D., Streletskii D.A., Ustinova E.V., Shirokov R.S., Degradatsiya merzloty: rezul'taty mnogoletnego geokriologicheskogo monitoringa v zapadnom sektore rossiiskoi Arktiki (Permafrost degradation: results of the long-term geocryological monitoring in the western sector of Russian Arctic), Kriosfera Zemli, 2020, Vol. 24, No. 2, p. 15, DOI: 10.21782/KZ1560-7496-2020-2(15-30).
3. Vorob'eva L.A., Teoriya i praktika khimicheskogo analiza pochv (Theory and practice chemical analysis of soils), Moscow: GEOS, 2006. 400 p.
4. Matyshak G.V., Bogatyrev L.G., Goncharova O.Yu., Bobrik A.A. Osobennosti razvitiya pochv gidromorfnykh ekosistem severnoi taigi Zapadnoi Sibiri v usloviyakh kriogeneza (Specific features of the development of soils of hydromorphic ecosystems in the northern taiga of Western Siberia under conditions of cryogenesis), Pochvovedenie, 2017, No. 10, pp. 1155–1164, DOI: 10.7868/S0032180X17100069.
5. Mel'nikov E.S., Tagunova L.N., Lazareva N.A., Moskalenko N.G., Landshafty kriolitozony Zapadno-Sibirskoi gazonosnoi provintsii (Landscapes of the permafrost zone of the West Siberian gas-bearing province), Novosibirsk: Nauka, Sibirskoe otd., 1983. 165 p.
6. Moskalenko N.G., Izmeneniya kriogennykh landshaftov severnoi taigi Zapadnoi Sibiri v usloviyakh menyayushchegosya klimata i tekhnogeneza (Cryogenic landscape changes in the West Siberian northern taiga in the conditions of climate change and human-induced disturbancs), Kriosfera Zemli, 2012, Vol. 16, No. 2, pp. 38–42.
7. Prokushkin A.S., Gavrilenko I.V., Prokushkin S.G., Abaimov A.P., Postuplenie rastvorennogo organicheskogo ugleroda v pochvu listvennichnikov v usloviyakh sploshnoi merzloty Srednei Sibiri (The flux of dissolved organic carbon to soil under larch forests in conditions of permafrost in Central Siberia), Lesovedenie, 2005, No. 5., pp. 41–48.
8. Prokushkin A.S., Tokareva I.V., Prokushkin S.G., Abaimov, A.P., Guggenberger G., Potoki rastvorennogo organicheskogo veshchestva v listvennichnikakh kriolitozony Srednei Sibiri (Fluxex of dissolved organic matter in larch forests in the cryolithozone of Central Siberia), 2008, Ekologiya, No. 3. pp. 163–172.
9. Raudina T.V., Loiko S.V., Kritskov I.V., Lim A.G., Sravnenie sostava pochvennykh vod merzlykh bolot Zapadnoi Sibiri, poluchennykh razlichnymi metodami (Comparing the composition of soil waters of West Siberian frozen mires sampled by different methods), Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya, 2016, No. 3(35), pp. 26–42. DOI: 10.17223/19988591/35/2.
10. Tokareva I.V., Prokushkin A.S., Prokushkin S.G., Rol' gidrologicheskikh uslovii v mobilizatsii organicheskogo veshchestva merzlotnykh pochv Tsentral'noi Evenkii (The Role of hydrological conditions in the mobilization of organic matter in cryogenic soils of Central Evenkia), Lesovedenie, 2008, No. 3., pp. 39–46.
11. Shishov L.L., Tonkonogov V.D., Lebedeva I.I., Gerasimova M.I., Klassifikatsiya i diagnostika pochv Rossii (Classification and diagnostics of soils in Russia), Smolensk: Oikumena, 2004. 342 p.
12. Åkerman H.J., Johansson M., Thawing permafrost and thicker active layers in sub-arctic Sweden, Permafr. Periglac. Process., 2008, Vol. 19, pp. 279–292, DOI: 10.1002/ppp.626.
13. Biester H., Selimović D., Hemmerich S., Petri M., Halogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter, Biogeosciences, 2006, Vol. 3, No. 1, pp. 53–64, DOI: 10.5194/bg-3-53-2006.
14. Broder T., Blodau C., Biester H., Knorr K.H., Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia, Biogeosciences, 2012, Vol. 9, No. 4, pp. 1479–1491, DOI: 10.5194/bg-9-1479-2012.
15. Callaghan T.V., Jonasson C., Thierfelder T., Yang Z., Hedenås H., Johansson M., Molau U., Van Bogaert R., Michelsen A., Olofsson J., Gwynn-Jones, D., Bokhorst S., Phoenix G., Bjerke J.W., Tømmervik H., Christensen T.R., Hanna E., Koller E.K., Sloan V.L., Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers, Philos. Trans. R. Soc. B. Biol. Sci., 2013, Vol. 368, No. 1624, article ID 20120488, DOI: 10.1098/rstb.2012.0488.
16. Camill P., Permafrost thaw accelerates in boreal peatlands during late-20th centure climate warming, Clim. Change, 2005, Vol. 68, pp. 135–152, DOI: 10.1007/s10584-005-4785-y.
17. Clark J.M., Ashley D., Wagner M., Chapman P.J., Lane S.N., Evans C.D., Heathwaite A.L., Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table draw‐down, Glob. Change Biol., 2009, Vol. 15, No. 4, pp. 794–807, DOI: 10.1111/j.1365-2486.2008.01683.x.
18. Cory R.M., Kling G.W., Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum, Limnol. Oceanogr. Lett., 2018, Vol. 3, No. 3, pp. 102–116, DOI: 10.1002/lol2.10060.
19. Dieleman C.M., Lindo Z., McLaughlin J.W., Craig A.E., Branfireun B.A., Climate change effects on peatland decomposition and porewater dissolved organic carbon biogeochemistry, Biogeochemistry, 2016, Vol. 128, pp. 385–396, DOI: 10.1007/s10533-016-0214-8.
20. Evans C., Monteith D., Cooper D., Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts, Environ. Pollut., 2005, Vol. 137, pp. 55–71, DOI: 10.1016/j.envpol.2004.12.031.
21. FAO. IUSS working group WRB. World reference base for soil resources 2014, International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports, 2014, No. 106.
22. Feng X., Vonk J.E., Van Dongen B.E., Gustafsson Ö., Semiletov I.P., Dudarev O.V., Wang Z., Montluçon D.B., Wacker L., Eglinton T.I., Differential mobilization of terrestrial carbon pools in Eurasian Arctic River basins, Proc. Natl. Acad. Sci. U.S.A., 2013, Vol. 110, pp. 14168–14173, DOI: 10.1073/pnas.1307031110.
23. Frey K.E., McClelland J.W., Impacts of permafrost degradation on arctic river biogeochemistry, Hydrol. Process., 2009, Vol. 23, pp. 169–182, DOI: 10.1002/hyp.7196.
24. Freeman C., Evans C.D., Monteith D.T., Reynolds B., Fenner N., Export of organic carbon from peat soils, Nature, 2001, Vol. 412, No. 6849, pp. 785, DOI: https://doi.org/10.1038/35090628.
25. Gentsch N., Mikutta R., Alves R.J.E., Barta J., Čapek P., Gittel A., Hugelius G., Kuhry P., Lashchinskiy N., Palmtag J., Richter A., Šantrůčková H., Schnecker J., Shibistova O., Urich T., Wild B., Guggenberger G., Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic, Biogeosciences, 2015, Vol. 12, No. 14, pp. 4525–4542, DOI: 10.5194/bg-12-4525-2015.
26. Glatzel S., Kalbitz K., Dalva M., Moore T., Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs, Geoderma, 2003, Vol. 113, No. 3–4, pp. 397–411, DOI: 10.1016/S0016-7061(02)00372-5.
27. Hinzman L.D., Bettez N.D., Bolton W.R., Chapin F. S., Dyurgerov M.B., Fastie C.L., Griffith B., Hollister R.D., Hope A., Huntington H.P., Jensen A.M., Jia G.J., Jorgenson T., Kane D.L., Klein D.R., Kofinas G., Lynch A.H., Lloyd A.H., McGuire A.D., Nelson F.E., Nolan M., Oechel W.C., Osterkamp T.E., Racine C.H., Romanovsky V.E., Stone R.S., Stow D.A., Sturm M., Tweedie C.E., Vourlitis G.L., Walker M.D., Walker D.A., Webber P.J., Welker J.M., Winker K.S., Yoshikawa K., Evidence and implications of recent climate change in northern Alaska and other Arctic regions, Clim. Change, 2005, Vol. 72, pp. 251–298, DOI: 10.1007/s10584-005-5352-2.
28. Hugelius G., Loisel, J., Chadburn S., Jackson R.B., Jones M., MacDonald G., Marushchak M., Olefeldt D., Packalen M., Siewert M. B., Treat C., Turetsky M., Voigt C., Yu Z., Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, Proc. Natl. Acad. Sci. USA, 2020, Vol. 117, No. 34, pp. 20438–20446, DOI: 10.1073/pnas.1916387117.
29. Jennings E., Järvinen M., Allott N., Arvola L., Moore K., Naden P., Aonghusa C.N., Nõges T., Weyhenmeyer G.A., Impacts of climate on the flux of dissolved organic carbon from catchments, The impact of climate change on European lakes, In: Aquatic Ecology Serie, D.: Springer, 2010, Vol. 4, pp. 199–220, DOI: 10.1007/978-90-481-2945-4_12.
30. Kaiser K., Guggenberger G., Haumaier L., Zech W., Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany, Biogeochemistry, 2001, Vol. 55, pp. 103–143, DOI: 10.1023/A:1010694032121.
31. Kaiser K., Kalbitz K., Cycling downwards – dissolved organic matter in soils, Soil Biol. Biochem., 2012, Vol. 52, pp. 29–32, DOI: 10.1016/j.soilbio.2012.04.002.
32. Kleber M., Jahn R., Retention of dissolved organic matter by illitic soils and clay fractions: influence of mineral phase properties, J. of Plant Nutr. and Soil Sci., 2003, Vol. 166, No. 6, pp. 737–741, DOI: 10.1002/jpln.200321125.
33. Kalbitz K., Solinger S., Park, J.H., Michalzik B., Matzner E., Controls on the dynamics of dissolved organic matter in soils: a review, Soil Sci., 2000, Vol. 165, pp. 277–304.
34. Kalbitz K., Geyer S., Different effects of peat degradation on dissolved organic carbon and nitrogen, Org. Geochem., 2002, Vol. 33, No. 3, pp. 319–326, DOI: 10.1016/S0146-6380(01)00163-2.
35. Kim H.M., Webster P.J., Curry J.A., Evaluation of short‐term climate change prediction in multi‐model CMIP5 decadal hindcasts, Geophys. Res. Lett., 2012, Vol. 39, No. 10, DOI: 10.1029/2012GL051644.
36. Lim A.G., Loiko S.V., Pokrovsky O.S., Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia, Geoderma, 2022, Vol. 409, pp. 115601, DOI: 10.1016/j.geoderma.2021.115601.
37. Limpens J., Berendse F., Blodau C., Canadell J.G., Freeman C., Holden J., Roulet N., Rydin H., Schaepman-Strub G., Peatlands and the carbon cycle: from local processes to global implications – a synthesis, Biogeosciences, 2008, Vol. 5, No. 5, pp. 1475–1491, DOI: 10.5194/bg-5-1475-2008.
38. Meredith M., Sommerkorn M., Cassotta S., Derksen C., Ekaykin A., Hollowed A., Kofinas G., Mackintosh A., Melbourne-Thomas J., Muelbert M.M.C., Ottersen G., Pritchard H., Schuur E.A.G., Polar regions. Chapter 3, IPCC special report on the ocean and cryosphere in a changing climate, 2019, URL: https://hdl.handle.net/102.100.100/23122904.v1.
39. Moore T. R., Dalva M., Some controls on the release of dissolved organic carbon by plant tissues and soils, Soil Sci., 2001, Vol. 166, No. 1, pp. 38–47.
40. Müller M., Alewell C., Hagedorn F., Effective retention of litter-derived dissolved organic carbon in organic layers, Soil Biol. Biochem., 2009, Vol. 41, No. 6, pp. 1066–1074, DOI: 10.1016/j.soilbio.2009.02.007.
41. Payette S., Delwaide A., Caccianiga M., Beauchemin M., Accelerated thawing of subarctic peatland permafrost over the last 50 years, Geophys. Res. Lett., 2004, Vol. 31, No.18, DOI: 10.1029/2004GL020358.
42. Preston M.D., Basiliko N., Carbon mineralization in peatlands: does the soil microbial community composition matter? Geomicrobiol. J., 2016, Vol. 33, No. 2, pp. 151–162, DOI: 10.1080/01490451.2014.999293.
43. Raudina T.V., Loiko S.V., Lim A.G., Krickov I.V., Shirokova L.S., Istigechev G.I., Kuzmina D.M., Kulizhsky S.P., Vorobyev S.N., Pokrovsky O.S., Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia, Biogeosciences, 2017, Vol. 14, No. 14, pp. 3561–3584, DOI: 10.5194/bg-2017-24.
44. Schlotter D., Schack-Kirchner H., Hildebrand E.E., Wilpert K., Equivalence or complementarity of soil-solution extraction methods, J. Plant Nutr. Soil Sci., 2012, Vol. 175, pp. 236–244, DOI: 10.1002/jpln.201000399.
45. Selvam B.P., Lapierre J.F., Guillemette F., Voigt C., Lamprecht R.E., Biasi C., Christensen T.R., Martikainen P.J., Berggren M., Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat, Sci. Rep., 2017, Vol. 7, No. 1, pp. 45811, DOI: 10.1038/srep45811.
46. Shen Y.H., Sorption of natural dissolved organic matter on soil, Chemosphere, 1999, Vol. 38, No. 7, pp. 1505–1515, DOI: 10.1021/jp9902452.
47. Smith L.C., Sheng Y., MacDonald G.M., A first pan‐Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution, Permafr. Periglac. Process, 2007, Vol. 18, No. 2, pp. 201–208, DOI: 10.1002/ppp.581.
48. Stanek W., Silc T., Comparisons of four methods for determination of degree of peat humification (decomposition) with emphasis on the von Post method, Can. J. Soil Sci., 1977, Vol. 57, pp. 109–117, DOI: 10.4141/cjss77-015.
49. Tarnocai C., The effect of climate change on carbon in Canadian peatlands, Glob. Planet Change, 2006, Vol. 53, No. 4, pp. 222–232, DOI: 10.1016/j.gloplacha.2006.03.012.
50. Tarnocai C., Canadell J.G., Schuur E.A., Kuhry P., Mazhitova G., Zimov S., Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cycles, 2009, Vol. 23, No. 2, DOI: 10.1029/2008GB003327.
51. Page S.E., Rieley J.O., Banks C.J., Global and regional importance of the tropical peatland carbon pool, Glob. Chang. Biol., 2011, Vol. 17, No. 2, pp. 798–818, DOI: 10.1111/j.1365-2486.2010.02279.x.
52. Wang H., Richardson C.J., Ho M., Flanagan N., Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events – A microcosm experiment, Sci. Total Environ., 2016, Vol. 566, pp. 621–626, DOI: 10.1016/j.scitotenv.2016.04.211.
53. Wen H., Perdrial J., Abbott B.W., Bernal S., Dupas R., Godsey S.E., Harpold A., Rizzo D., Underwood K., Adler T., Sterle G., Li L., Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale, Hydrol. Earth Syst. Sci., 2020, Vol. 24, No. 2, pp. 945–966, DOI: 10.5194/hess-24-945-2020.
54. Wickham H., Chang W., Wickham M.H., Package “ggplot2”, Create elegant data visualizations using the grammar of graphics, Version. 2016, Vol. 2, No. 1, pp. 1–189.
55. Wright S.N., Thompson L. M., Olefeldt D., Connon R. F., Carpino O.A., Beel C.R., Quinton W.L., Thaw-induced impacts on land and water in discontinuous permafrost: A review of the Taiga Plains and Taiga Shield, northwestern Canada, Earth Sci. Rev., 2022, Vol. 32, pp. 104104, DOI: 10.1016/j.earscirev.2022.104104.
56. Yu Z., Loisel J., Brosseau D.P., Beilman D.W., Hunt S.J., Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 2010, Vol. 37, No. 13. DOI: 10.1029/2010GL043584.
57. Yudina A.V., Klyueva V.V., Romanenko K.A., Fomin D.S., Micro-within macro: How micro-aggregation shapes the soil pore space and water-stability, Geoderma, 2022, Vol. 415, pp. 115771, DOI: 10.1016/j.geoderma.2022.115771.
58. Zsolnay A., Dissolved organic matter: artefacts, definetions and functions, Geoderma, 2003, Vol. 113, pp. 187–209, DOI: 10.1016/S0016-7061(02)00361-0.
59.
Supplementary files
Review
For citations:
Timofeeva M.V., Goncharova O.Yu., Matyshak G.V., Bochkova S.D., Kadulin M.S. Carbon leaching from peat soils of the north of Western Siberia under different hydrological conditions. Dokuchaev Soil Bulletin. 2024;(119):211-241. (In Russ.) https://doi.org/10.19047/0136-1694-2024-119-211-241