Preview

Бюллетень Почвенного института имени В.В. Докучаева

Расширенный поиск

Определение давления тракторов на почву и картографирование ее уплотнения

https://doi.org/10.19047/0136-1694-2024-120-136-163

Аннотация

Производители сельскохозяйственной техники при проектировании уделяют мало внимания ее воздействию на почву, поэтому выпускают модели с высокой компрессионной нагрузкой на почву или с малой площадью контакта шин/гусениц с поверхностью почвы. Поэтому целью данного исследования является оценка негативного воздействия колесных и гусеничных тракторов на почву с точки зрения ее переуплотнения и его причин (т. е. конструктивных особенностей тракторных шин/гусениц) за последние 60 лет (с 1961 по 2021 гг.). Уплотнение почвы происходит из-за давления, оказываемого сельскохозяйственными машинами на почву через пятно контакта шин/гусениц с поверхностью почвы. Для этого был проанализирован основной показатель негативного воздействия на почву тракторов, произведенных за последние 60 лет, а именно – среднее давление, оказываемое на почву шинами или гусеницами тракторов, произведенных в странах ЕС и на постсоветском пространстве с 1961 по 2021 гг. Общее снижение среднего давления шин/гусениц на почву наблюдается в 1980-х и 1990-х годах, а с 2000 г. отмечается его общее увеличение, прежде всего для тракторов мощностью более 140 кВт. Таким образом, существует острая необходимость в оценке пространственно-временных изменений уязвимости почвы к переуплотнению, которая зависит от погодных условий и свойств почвы, а также от агротехнических приемов, и может быть в полной мере оценена только с помощью комбинации традиционных методов (т. е. использования конусного пенетрометра с последующим 2D-картографированием в ГИС или 3D-картографированием с помощью геостатистики) и механических подходов (т. е. расчета параметров сельскохозяйственных машин – площади контакта с почвой). Результаты показывают, что производители тракторов не позаботились о снижении уплотнения почвы в рассматриваемый период.

Об авторах

И. П. Адылин
ФГБОУВО “Брянский государственный аграрный университет”
Россия


A. Comparetti
Университет Палермо
Италия


C. Greco
Университет Палермо
Италия


В. П. Лапик
ФГБОУВО “Брянский государственный аграрный университет”
Россия


П. В. Лапик
ФГБОУВО “Брянский государственный аграрный университет”
Россия


S. Orlando
Университет Палермо
Италия


Список литературы

1. Adamchuk V.I., Sotnikov A.V., Speichinger J.D., Kocher M.F., Instrumentation System for Variable Depth Tillage, ASAE Annual International Meeting, Paper Number 031078, Las Vegas, Nevada, 2003, pp. 1–10.

2. Adylin I.P., Increasing the permeability and reducing the technogenic impact of tracked vehicles with elastic tracks by reducing the unevenness of the distribution of pressure on the soil: Cand. techn. nauk thesis, 05.20.01, Bryansk, 2016, 150 p.

3. Adylin I.P., Lapik V.P., Application of rubber-cord tracks in caterpillar propulsion, Technics in agriculture, 2013, No. 1, p. 27.

4. Adylin I.P., Lapik V.P., Kuznetsov A.E., Malashenko Yu. A., Lapik P.V., Elastic track of the vehicle track: pat. 196941 Russian Federation: IPC B62D 55/24: Patent holder Federal State Budgetary Educational Institution of Higher Education “Bryansk State Agrarian University”, Application No. 2019131658; declared 7.10.2019; publ. 23.3.2020, Byul. No. 9.

5. Alaoui A., Diserens E., Mapping soil compaction – A review, Current Opinion in Environmental Science & Health, 2018, No. 5, pp. 60–66, DOI: 10.1016/j.cosh.2018.05.003.

6. Alaoui A., Rogger M., Peth S., Blöschl G., Does soil compaction increase floods? A review, J Hydrol., 2018, No. 557, pp. 631–642, DOI: 10.1016/j.jhydrol.2017.12.052.

7. Alesso C.A., Masola M.J., Carrizo M.A., Cipriotti P.A., Imhoff del S., Spatial variability of short-term effect of tillage on soil penetration resistance, Archives of Agronomy and Soil Science, 2019, No. 65(6), pp. 822–832, DOI: 10.1080/03650340.2018.1532076.

8. Beckett C.T.S., Bewsher S., Guzzomi A.L., Lehane B.M., Fourie A.B., Riethmuller G., Evaluation of the dynamic cone penetrometer to detect compaction in ripped soils, Soil Tillage Res., 2018, No. 175, pp. 150–157, DOI: 10.1016/j.still.2017.09.009.

9. Bussell J., Crotty F., Stoate C., Comparison of Compaction Alleviation Methods on Soil Health and Greenhouse Gas Emissions, Land, 2021, No. 10, pp. 1–10, DOI: 10.3390/land10121397.

10. Campbell D.M.H., White B., Arp P.A., Modeling and mapping soil resistance to penetration and rutting using LiDAR-derived digital elevation data, J Soil Conserv., 2013, No. 68, pp. 460–473, DOI: 10.2489/jswc.68.6.460.

11. Carrara M., Castrignanò A., Comparetti A., Febo P., Orlando S., Multivariate geostatistics for assessing and predicting soil compaction, Proc. of the 5th European Conf. on Precision Agriculture (5ECPA), Sweden, Uppsala, 2005, pp. 723–730.

12. Carrara M., Comparetti A., Fabio P., Morello G., Orlando S., Mapping soil compaction measuring cone penetrometer resistance. Vol. Precision Agriculture, 4th European Conf. on Precision Agriculture (ECPA), Berlin, Germany, 2003.

13. Carrara M., Castrignanò A., Comparetti A., Febo P., Orlando S., Mapping of penetrometer resistance in relation to tractor traffic using multivariate geostatistics, Geoderma, 2007, No. 142(3-4), pp. 294–307, DOI: 10.1016/j.geoderma.2007.08.020.

14. Chekin G.V., Silaev A.L., Smolsky E.V., Distribution of Cu, Ni, Zn, Mn, Cr, Cd, Pb, Co, Mo, As in alluvial soils of floodplain landscapes of the Sozh river basin, Dokuchaev Soil Bulletin, 2021, Vol. 109, pp. 165–185, DOI: 10.19047/0136-1694-2021-109-165-185.

15. Comparetti A., Febo P., Orlando S., Survey of the Mean Pressure Exerted by a Wide Range of Tractors on the Soil, Work safety and risk prevention in agro-food and forest systems: Intern. Conf., Italy, Ragusa Ibla Campus, 2010, pp. 1–5.

16. Comparetti A., Febo P., Orlando S.A., System for the Real-Time Geo-Referenced Measurement of Soil Parameters, Rural Development in Global Changes, Vol. 5, Book 1, 5th International Scientific Conference “Rural Development 2011”, Akademija, Kaunas district, Lithuania, 2011, pp. 319–323.

17. Comparetti A., Febo P., Orlando S., A system for the real-time geo-referenced measurement of soil parameters, Bulgarian Journal of Agricultural Science, 2013, No. 19(6), pp. 1253–1257.

18. Comparetti A., Febo P., Greco C., Orlando S., Have tractor manufacturers bore in mind soil compaction over the last 40 years? Proc. of the 9th Intern. Scien. Conf. Rural Development 2019: “Research and Innovation for Bioeconomy”, Akademija, Kaunas district., Lithuania, 2019, pp. 112–118.

19. Comparison of wheeled and tracked tractors, Agrovestnik, URL: https://agrovesti.net/lib/tech/machinery-and-equipment/sravnenie-kolesnykh-i-gusenichnykh-traktorov.html (accessed on 6, October ,2023).

20. Diserens E., Chanet M., Marionneau A., Machine weight and soil compaction: TASC V2.0.xls – a practical tool for decision-making in farming, AgEng, Clermont-Ferrand, 2010, No. 239, pp. 10.

21. Elaoud A., Chehaibi S., Soil compaction due to tractor traffic, Journal of Failure Analysis and Prevention, 2011, No. 11(5), pp. 539–545, DOI: 10.1007/s11668-011-9479-3.

22. European Commission, Joint Research Centre, European Soil Data Centre (ESDAC). Natural susceptibility to soil compaction in Europe. URL: https://esdac.jrc.ec.europa.eu/content/natural-susceptibility-soil-compaction-europe (accessed on 6, October, 2023).

23. Febo P., Pessina D., Pipitone F., Un impianto per la misura dell’area di contatto dei pneumatici agricoli: prime prove comparative, An equipment for measuring the contact area of agricultural tyres: first comparative tests: VI Convegno Nazionale di Ingegneria Agraria, Italy, Ancona, 1997.

24. Gasso V., Sørensen C.A.G., Oudshoorn F.W., Green O., Controlled traffic farming: A review of the environmental impacts, European Journal of Agronomy, 2013, No. 48, pp. 66–73, DOI: 10.1016/j.eja.2013.02.002.

25. GOST R 58656-2019. Mobile agricultural machinery. Methods for determining the impact of propulsion on the soil. Electronic fund of legal and normative-technical documents. 2021. National Standard of Russian Federation. URL: https://docs.cntd.ru/document/1200169433 (accessed on 6, October, 2023).

26. GOST R 58655-2019. Mobile agricultural machinery. Norms for determining the impact of propulsion on the soil. Electronic fund of legal and normative-technical documents. National Standard of the Russian Federation. URL: https://internet-law.ru/gosts/gost/72298/ (accessed on 6, October, 2023).

27. Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov, A., Chini L., Justice C.O., Townshend J.R.G., High-resolution global maps of 21st-century forest cover change, Science, 2013, No. 342, pp. 850–853, DOI: 10.1126/science.1244693.

28. Kees G., Hand-held electronic cone penetrometers for measuring soil strength, Technical Report 0524-2837-MTDC, U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center. Missoula, 2005.

29. Ksenevich I.P., Skotnikov V.A., Lyasko M.I., Running system – soil – harvest, Мoscow: Agropromizdat, 1985, 304 p.

30. Lapik V.P., Mechanical and technological bases of interaction of caterpillar propulsion machines with waterlogged floodplain soil: Dr. Techn. Sci. thesis, Bryansk, 2015, 327 p.

31. Lapik V.P., Adylin I.P., Reduction of negative impact on waterlogged soils of caterpillar propulsion machines by application of rubber-cord tracks, Bulletin of the Bryansk State Agricultural Academy, 2011, No. 1, pp. 28–31.

32. Lapik V.P., Adylin I.P., Investigation of the impact of modern MTU on the soils of the Bryansk region, Design, use and reliability of agricultural machinery, 2013, No. 1(12), pp. 58–62.

33. Lapik V.P., Adylin I.P., Kuznetsov A.E., Malashenko Yu. A., Vladimirovich L.P., Elastic track of a vehicle caterpillar: a patent for a utility model 196941 Russian Federation, IPC B62D 55/24: Patent holder Federal State Budgetary Educational Institution of Higher Education “Bryansk State Agrarian University”, Application No. 2019131658 dated 7.10.2019; publ. 23.20, Byul. No. 9.

34. Lapik V.P., Frantsuzov V.S., Adylin I.P., The effect of MTU on soil compaction, Agro-consultant, 2012, No. 1, pp. 18–21.

35. Lapik V.P., Frantsuzov V.S., Adylin I.P., Investigation of soil compaction MTU, Bulletin of the Bryansk State Agricultural Academy, 2012, No. 1, pp. 35–37.

36. LLC Company Mir Shin. Wide-profile ultra-low pressure tires are a necessity for domestic wheeled tractors, URL: https://ooo-kompaniya-mir-shin.promportal.su/firm_news/395/shirokoprofilnie-shini-sverhnizkogo-davleniya-neobhodimost-dlya-otechestvennih-kolesnih-traktorov (accessed on 6, October, 2023).

37. Mouazen A.M., Ramon H., De Baerdemaeker J., On-line detection of soil compaction distribution based on finite element modelling procedure, Proc. of the 3rd European Conference of Precision Agriculture (G. Grenier, S. Blackmore, Eds.), Vol. 1, France, Agro Montpellier, Ecole Nationale Supérieure Agronomique de Montpellier, 2001, pp. 455–460.

38. Mzuku M., Khosla R., Reich R., Inman D., Smith F., MacDonald L., Spatial Variability of Measured Soil Properties across Site-Specific Management Zones, Soil Sci. Soil Fertility & Plant Nutrition, 2005, No. 69, pp. 1572–1579, DOI: 10.2136/sssaj2005.0062.

39. Orlando S., Comparetti A., Fabio P., Greco C., The influence of tractors on soil compaction in the last four decades: Intern. Conf., Italy, Ragusa, 2021.

40. Panagos P., Barcelo S., Bouraoui F., Bosco C., Dewitte O., Gardi C., Erhard M., Hervas De Diego F., Hiederer R., Jeffery S., Lükewille A., Marmo L., Montanarella L., Olazabal C., Petersen J., Penizek V., Strassburger T., Toth G., Van Den Eeckhaut M., Van Liedekerke M., Verheijen F., Viestova E., The State of Soil in Europe: A contribution of the JRC to the European Environment Agency’s Environment State and: Outlook Report – SOER 2010 EUR 25186 EN, Luxembourg: Publications Office of the European Union, 2012.

41. Peregoodov N.E., Novak M.A., Practical applications analysis and economic efficiency of the method on assessment of the sealing action from the tracked mover on the soil layer, International Journal of Engineering and Technology (UAE), 2018, No. 7(2), 13, Special Issue, pp. 319–321, DOI: 10.14419/ijet.v7i2.13.13069.

42. Raghavan G.S.V., Alvo P., McKyes E., Soil compaction in agriculture: a view toward managing the problem, Adv. Soil Sci., 1990, No. 11, pp. 1–35.

43. Raper R.L., Schwab E.B., Dabney S.M., Measurement and variation of site-specific hardpans for silty upland soils in the South-eastern United States, Soil Tillage Res., 2005, No. 84, pp. 7–17, DOI: 10.1016/j.still.2004.08.010.

44. Shah A.N., Tanveer M., Shahzad B., Yang G., Fahad S., Ali S., Bukhari M.A., Tung S.A., Hafeez A., Souliyanonh B., Soil compaction effects on soil health and crop productivity: an overview, Environ Sci Pollut Res., 2017, Vol. 24, pp. 10056–10067, DOI: 10.1007/s11356-017-8421-y.

45. Silaev A.L., Smolsky E.V., Chekin G.V., Simonov V.Yu., Novikov A., Possibility of using technogenically polluted floodplain landscapes, Revista de la Universidad del Zulia, 2021, No. 12(32), pp. 102–113.

46. Soane B.D., Bonne F.R., The effects of tillage and traffic on soil structure, Soil Tillage Res., 1986, No. 8, pp. 303–306.

47. Skuratovich A., TRIZ-pros: Effective solutions in agriculture, Don't push the guys! Don't push! Moscow, 2006, pp. 87–101.

48. Smolsky E.V., Silaev A.L., Dyachenko V.V., Nechaev M.M., Mameeva V.E., Green forage in radioactive flood meadows, IOP Conference Series: Earth and Environmental Science, The proceedings of the conference AgroCON-2019, article ID 012083.

49. Vaz C.M.P., Manieri J.M., de Maria I.C., Tuller M., Modeling and correction of soil penetration resistance for varying soil water content, Geoderma, 2011, No. 166, pp. 92–101, DOI: 10.1016/j.geoderma.2011.07.016.

50. Whattoff D., Mouazen A., Wayne T., A multi sensor data fusion approach for creating variable depth tillage zones, Advances in Animal Biosciences, 2017, No. 8(2), pp. 461–465, DOI: 10.1017/S2040470017000413.


Рецензия

Для цитирования:


Адылин И.П., Comparetti A., Greco C., Лапик В.П., Лапик П.В., Orlando S. Определение давления тракторов на почву и картографирование ее уплотнения. Бюллетень Почвенного института имени В.В. Докучаева. 2024;(120):136-163. https://doi.org/10.19047/0136-1694-2024-120-136-163

For citation:


Adylin I.P., Comparetti A., Greco C., Lapik V.P., Lapik P.V., Orlando S. Computing the pressure of agricultural tractors on soil and mapping its compaction. Dokuchaev Soil Bulletin. 2024;(120):136-163. https://doi.org/10.19047/0136-1694-2024-120-136-163

Просмотров: 242


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)