Adsorption of fulvic acid on clay subfractions isolated from mineral horizons of peat-podzol-gley soil
https://doi.org/10.19047/0136-1694-2024-SPYC-37-72
Abstract
We studied the adsorption of fulvic acid (FA) obtained from the H horizon of peaty-podzolic-gleyic soil on sludge subfractions isolated from the ELG and Ecng horizons of the same soil: 0–0.2 µm (I), 0.2–0.06 µm (II) , 0.06–0.02 µm (III) and <0.02 µm (IV). It has been established that, in terms of unit mass, more FAs are sorbed by subfractions III and IV, which have a larger surface area. In terms of per unit surface area, an inverse relationship is observed: the larger the fraction, the more FA is sorbed on it. All subfractions of sludge isolated from both horizons sorb predominantly hydrophobic components of FA, but in the finer subfractions, which practically do not contain kaolinite, the contribution of hydrophilic components in total sorption increases. Under the experimental conditions, FA molecules with a molecular weight of 20 kDa were not adsorbed in micropores with an average size of ≈ 3.7 nm. The main mechanism of FA sorption on sludge subfractions is hydrophobic interactions. The hydrophilic components of FA are sorbed through electrostatic interactions, through ligand exchange on lateral cleaved clay minerals and with the formation of bridging bonds with the Ca2+ ion occupying exchange positions in clays.
About the Authors
K. A. KolchanovaRussian Federation
1 Leninskie Gori, Moscow 119234; 7 Bld. 2 Pyzhevskiy per., Moscow 119017
I. I. Tolpeshta
Russian Federation
1 Leninskie Gori, Moscow 119234
U. G. Izosimova
Russian Federation
1 Leninskie Gori, Moscow 119234
References
1. Aidinyan R.H., Izvlechenie ila iz pochv: kratkaja instrukcija. Metodicheskie ukazanija (Removal of silt from soils: a brief instruction. Methodical instructions), 1960.
2. Marri R., Grenner D., Mejes P., Rodujell V., Biohimija cheloveka (Human biochemistry), Vol. 1, Moscow: Mir, 1993, 384 p.
3. Strajer L., Biohimija (Biochemistry), Moscow: Mir, 1984, Vol. 1, 232 p.
4. Ahmat A.M., Thiebault T., Guégan R., Phenolic acids interactions with clay minerals: A spotlight on the adsorption mechanisms of Gallic Acid onto montmorillonite, Applied Clay Science, 2019, Vol. 180, 105188.
5. Avena M.J., Vermeer A.W.P., Koopal L.K., Volume and structure of humic acids studied by viscometry pH and electrolyte concentration effects, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, Vol. 151, pp. 213–224.
6. Avneri‐ Katz S., Young R.B., McKenna A.M., Chen H., Corilo Y.E., Polubesova T., Borch T., Chefetz B., Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: macroscale approach and molecular insight, Org. Geochem., 2017, Vol. 103, pp. 113–124, DOI: 10.1016/j.orggeochem.2016.11.004.
7. Bennett R.H., Hulbert M.H., Curry K.J., Curry A., Douglas J. Organic matter sequestered in potential energy fields predicted by 3-D clay microstructure model, Mar. Geol., 2012, Vol. 315, pp. 108–114.
8. Blocklehurst K., Baines B.S., Kierstan M.P.J., Papain and other constituents of Cartica papaya L., Topics on enzyme and fermentation biotechnology, E. Wiseman, E. Horwad (Eds), 1981, Vol. 5, pp. 262–335.
9. Chen H., Koopal L.K., Xiong J., Avena M., Tan W., Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite, Journal of Colloid and Interface Science, 2017, Vol. 504, pp. 457–467.
10. Chen H., Koopal L., Xu J., Wang M., Tan W., Selective adsorption of soil humic acid on binary systems containing kaolinite and goethite: assessment of sorbent interactions, Eur. J. Soil. sci., 2019, Vol. 70, pp. 1098–1107.
11. El‐ sayed M.E.A., Khalaf M.M.R., Gibson D., Rice J.A., Assessment of clay mineral selectivity for adsorption of aliphatic/aromatic humic acid fraction, Chem. Geol., 2019, Vol. 511, pp. 21–27, DOI: 10.1016/j.chemgeo.2019.02.034.
12. Feng X., Simpson A.J., Simpson M.J., Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces, Organic Geochemistry, 2005, Vol. 36, pp. 1553–1566.
13. Forsyth W.G., Studies on the more soluble complexes of soil organic matter; a method of fractionation, Biochem. J., 1947, Vol. 41, pp. 176–181, DOI: 10.1042/bj0410176.
14. Ghosh S., Wang Z.‐ Y., Kang S., Bhowmik P.C., Xing B.S., Sorption and fractionation of a peat derived humic acid by kaolinite, montmorillonite and goethite, Pedosphere, 2009, Vol. 19, pp. 21–30, DOI: 10.1016/s1002‐0160(08)60080‐6.
15. Gonzalez J.M., Laird D.A., Carbon sequestration in clay mineral fractions from C-labeled plant residues, Soil Science Society of America Journal, 2003, Vol. 67, No. 6.
16. Hong H., Chen S., Fang Q., Algeo T.J., Zhao L., Adsorption of organic matter on clay minerals in the Dajiuhu peat soil chronosequence, South China, Applied Clay Science, 2019, Vol. 178, Article 105164.
17. Isolation of IHSS Samples, URL: https://humic-substances.org/isolation-of-ihss-samples.
18. Kahle M., Kleber M., Jahn R., Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties, Organic Geochemistry, 2004, Vol. 35, No. 3, pp. 269–276.
19. Kaiser K., Zech W., Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases, Eur. J. Soil Sci., 2000, Vol. 51, pp. 403–411.
20. Kennedy M.J., Löhr S.C., Fraser S.A., Baruch E.T., Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis, Earth and Planetary Science Letters, 2014, Vol. 388, pp. 59–70.
21. Khalaf M., Kohl S.D., Klumpp E., Rice J.A., Tombácz E., Comparison of sorption domains in molecular weight fractions of a soil humic acid using solid‐ state 19F NMR, Environ. Sci. Technol., 2003, Vol. 37, pp. 2855–2860, DOI: 10.1021/es0206386.
22. Kleber M., Eusterhues K., Keiluweit M., Mikutta C., Mikutta R., Nico P.S., Mineral‐ organic associations: formation, properties, and relevance in soil environments, Adv. Agron., 2015, Vol. 130, pp. 1–140, DOI: 10.1016/bs.agron.2014.10.005.
23. Kleber M., Sollins P., Sutton R., A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonalstructures on mineral surfaces, Biogeochemistry, 2007, Vol. 85, pp. 9–24, DOI: 10.1007/S10533-007-9103-5.
24. Kögel‐ Knabner I., Guggenberger G., Kleber M., Kandeler E., Kalbitz K., Scheu S., Eusterhues K., Leinweber P., Organo‐ mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry, J. Plant Nutr. Soil Sci., 2008, Vol. 171, pp. 61–82.
25. Kolchanova K., Tolpeshta I., Izosimova U., Adsorption of fulvic acid and water extractable soil organic matter on kaolinite and muscovite, Agronomy, 2021, Vol. 11, pp. 2420, DOI: 10.3390/agronomy11122420.
26. Kriaa A., Hamdi N., Srasra E., Determination of point of zero charge of tunisian kaolinites by potentiometric and mass titration methods, Chin. Chem. Soc., 2008, Vol. 55, pp. 53–61, DOI: 10.1002/jccs.200800010.
27. Laird D.A., Barak P., Nater E.A., Dowdy R.H., Chemistry of smectitic and illitic phases in interstratified soil smectite, Soil Sci. Soc. Am. J., 1991, Vol. 55, pp. 1499–1504.
28. Laird D.A., Dowdy R.H., Simultaneous mineralogical quantification and chemical characterization of soil clays, Clays and Clay Minerals, 1994, Vol. 42, No. 6, pp. 747–754.
29. Liu X., Sprik M., Cheng J., Meijer E.J., Wang R., Acidity of edge surface sites of montmorillonite and kaolinite, Geochim. Cosmochim., 2013, Vol. 117, pp. 180–190, DOI: 10.1016/j.gca.2013.04.008.
30. Liu Y., Alessi D.S., Flynn S.L., Alam M.S., Hao W., Gingras M., Zhao H., Konhauser K.O., Acid‐ base properties of kaolinite, montmorillonite and illite at marine ionic strength, Chem. Geol., 2018, Vol. 483, pp. 191–200, DOI: 10.1016/j.chemgeo.2018.01.018.
31. Lützow M.V., Kögel-Knabner A.I., Ekschmitt K., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – A Review, The European Journal of Soil Science, 2006, Vol. 5, No. 4, pp. 426–445.
32. Mayer L.M., Schick L.L., Hardy K.R., Wagai R., MCcarthy J., Organic matter in small mesopores in sediments and soils, Geochimica et Cosmochimica Acta, 2004, Vol. 68, No. 19, pp. 3863–3872.
33. Mayer L.M., Xing B., Organic matter–surface area relationships in acid soils, Soil Sci. Soc. Am. J., 2001, Vol. 65, 250–258 p.
34. Miyahara M., Vinu A., Ariga K., Adsorption myoglobin over mesoporous silica molecular sieves: pore size effect and pore-filling model, Mater. Sci. Eng., 2007, Vol. 27, pp. 232–236, DOI: 10.1016/j.msec.2006.05.012.
35. Ndzana G.M., Huang L., Wang J.B., Zhang Z.Y., Characteristics of clay minerals in soil particles from an argillic horizon of Alfisol in central China, Applied Clay Science, 2018, Vol. 151, pp. 148–156.
36. Ransom B., Bennett R.H., Baerwald R., Shea K., TEM study of in situ organic matter on continental margins: occurrence and the “monolayer” hypothesis, Mar. Geol., 1997, Vol. 138, pp. 1–9.
37. Ransom B., Kim D., Kastner M., Wainwright S., Organic matter preservation on continental slopes: importance of mineralogy and surface area, Geochim. Cosmochim., 1998, Vol. 62, pp. 1329–1345.
38. Saidy A.R., Smernik R.J., Baldock J.A., Kaiser K., Sanderman J., The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide, Geoderma, 2013, Vol. 209–210, pp. 15–21.
39. Singh B., Jones E., Organo‐ mineral interactions in contrasting soils under natural vegetation, Front. Environ. Sci., 2014, Vol. 2, No. 2, DOI: 10.3389/fenvs.2014.00002.
40. Six J., Conant R.T., Paul E.A., Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant and Soil, 2002, Vol. 241, pp. 155–176.
41. Specht C.H., Kumke M.U., Frimmel F.H., Characterization of NOM adsorption to clay minerals by size exclusion chromatography, Water Res., 2000, Vol. 34, pp. 4063–4069, DOI: 10.1016/S0043‐1354(00)00148‐2.
42. Tournassat C., Bourg I.C., Steefel A.I., Bergaya F., Surface Properties of Clay Minerals, Developments in Clay Science, 2015, Vol. 6, pp. 5–31.
43. Wang K., Xing B., Structural and sorption characteristics of adsorbed humic acid on clay minerals, J. Environ. Qual., 2005, Vol. 34, pp. 342–349, DOI: 10.2134/jeq2005.0342.
44. Wei L., Bu H., Wei Y., Wu H., Wang G., Chen P., Li H., Fractionation of natural algal organic matter and its preservation on the surfaces of clay minerals, Applied Clay Science, 2021, Vol. 213, 106235.
45. Yu W.H., Li N., Tong D.S., Zhou C.H., Lin C.H., Xu C.Y., Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review, Applied Clay Science, 2013, Vol. 80–81, pp. 443–452.
46. Zhang L., Luo L., Zhang S., Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, Vol. 406, pp. 84–90.
47. Zhang Z.Y., Huang L., Liu F., Wang M.K., Fu Q.L., Zhu J., Characteristics of clay minerals in soil particles of two Alfisols in China, Applied Clay Science, 2016, Vol. 120, pp. 51–60.
Supplementary files
Review
For citations:
Kolchanova K.A., Tolpeshta I.I., Izosimova U.G. Adsorption of fulvic acid on clay subfractions isolated from mineral horizons of peat-podzol-gley soil. Dokuchaev Soil Bulletin. 2024:37-72. (In Russ.) https://doi.org/10.19047/0136-1694-2024-SPYC-37-72