Soil respiration activity and thermal stability of organic matter under the post-agricultural evolution of Haplic Luvisol
https://doi.org/10.19047/0136-1694-2025-124-91-115
Abstract
The aim of the study was to investigate the effects of post- agricultural soil development on the respiratory activity and thermal stability of accumulated organic matter. A post-agricultural chronosequence formed on Haplic Luvisols and including currently arable land, 7- and 25-year-old post- agricultural abandoned land and grassland was studied. Soils were studied using thermogravimetric analysis aimed to investigate pools of thermally labile, stable and persistent soil organic matter (SOM). Elemental analysis was used to determine organic carbon and total nitrogen in bulk soil and water extracts. Basal and substrate-induced respiration rates were determined by incubating soils and measuring the amount of CO2 released. The content and pool of soil microbial carbon were calculated based on the measured substrate- induced respiration. Organic, dissolved and microbial carbon, total and dissolved nitrogen and basal respiration rates increased during the post- agricultural development of soils. The specific respiration of microbial biomass was lowest in arable soil and increased after its abandonment. The availability of soil carbon for microbial decomposition increased in abandoned soils compared to arable ones. The SOM was dominated by the thermally labile pool (54–68%). The size of the thermally stabile pool of SOM was 19– 25%, persistent SOM was 13–21%. The accumulation rate of the thermally labile pool in the upper 30 cm of the soil, calculated for the 25-year period of the abandoned land use, was equal to 3.9 mg lab-SOM per year, stable –0.97 mg stab-SOM per year and persistent – 0.52 mg pers-SOM per year. As arable land was converted to abandoned, the proportion of the thermally labile pool in SOM increased. The post-agricultural increase in dissolved organic carbon was associated with the rise of the thermally labile pool of SOM, indicating the relationship between the availability of organic matter for microbial decomposition and its thermal stability.
About the Authors
E. A. FilimonenkoRussian Federation
6 Volodarskogo Str., Tyumen 625003
I. N. Kurganova
Russian Federation
2/2 Institutskaya str., Pushchino 142290
E. A. Dimitryuk
Russian Federation
6 Volodarskogo Str., Tyumen 625003
V. O. Lopez de Gerenu
Russian Federation
2/2 Institutskaya str., Pushchino 142290
M. A. Uporova
Russian Federation
6 Volodarskogo Str., Tyumen 625003
S. Y. Zorina
132 Lermontova Str., Irkutsk 664033
L. G. Sokolova
Russian Federation
132 Lermontova Str., Irkutsk 664033
N. V. Dorofeev
Russian Federation
132 Lermontova Str., Irkutsk 664033
N. P. Samokhina
Russian Federation
1 Olympiysky Ave., Sirius Federal Territory 354340
V. I. Lichko
Russian Federation
2/2 Institutskaya str., Pushchino 142290
A. K. Khodjaeva
Russian Federation
2/2 Institutskaya str., Pushchino 142290
Y. V. Kuzyakov
Germany
Gottingen 37077
References
1. Baeva Yu.I., Kurganova I.N., Lopes de Gerenyu V.O., Pochikalov A.V., Kudeyarov V.N., Fizicheskie svoistva i izmenenie zapasov ugleroda serykh lesnykh pochv v khode postagrogennoi evolyutsii (yug Moskovskoi oblasti) (Changes in physical properties and carbon stocks of gray forest soils in the southern part of Moscow region during postagrogenic evolution), Pochvovedenie, 2017, No. 3, pp. 345–353, DOI: https://doi.org/10.7868/S0032180X17030029.
2. Kogut B.M., Semenov V.M., Artem'eva Z.S., Danchenko N.N., Degumusirovanie i pochvennaya sekvestratsiya ugleroda (Humus depletion and soil carbon sequestration), Agrokhimiya, 2021, No. 5, pp. 3–13, DOI: https://doi.org/10.31857/S0002188121050070.
3. Kurganova I.N., Telesnina V.M., Lopes de Gerenyu V.O., Lichko V.I., Karavanova E.I., Dinamika pulov ugleroda i biologicheskoi aktivnosti agrodernovo-podzolov yuzhnoi taigi v khode postagrogennoi evolyutsii (Dynamics of Carbon Pools and Biological Activity of Retic Albic Podzols in Southern Taiga during the Postagrogenic Evolution), Pochvovedenie, 2021, No. 3, pp. 287–303, DOI: https://doi.org/10.31857/S0032180X21030102.
4. Polevoi opredelitel' pochv Rossii. M.: Pochvennyi in-t im. V.V. Dokuchaeva, 2008, p. 182.
5. Semenov V.M., Lebedeva T.N., Lopes de Gerenyu V.O., Ovsepyan L.A., Semenov M.V., Kurganova I.N., Puly i fraktsii organicheskogo ugleroda v pochve: struktura, funktsii i metody opredeleniya, (Pools and fractions of organic carbon in soil: structure, functions and methods of determination), Pochvy i okruzhayushchaya sreda, 2023, Vol. 6, No. 1., p. e199. DOI: https://doi.org/10.31251/pos.v6i1.199.
6. Sheina E.V., Karpachevskiy L.O. (Eds.), Teorii i metody fiziki pochv (Theories and methods of soil physics), Tula: Grif i K, 2007, 616 p.
7. Filimonenko E.A., Uporova M.A., Arbuzova E.A., Ibraeva K., Konstantinov A.O., Kurganova I.N., Kuzyakov Ya.V., Konversiya pashni v zalezh' uvelichivaet stabil'nost' organicheskogo veshchestva pochvy (Сonversion of arable land into abandoned increase stability of Soil organic matter), Agrofizika, 2023, No. 3, pp. 9–16, DOI: https://doi.org/10.25695/AGRPH.2023.03.02.
8. Kholodov V.A., Rogova O.B., Lebedeva M.P., Varlamov E.B., Volkov D.S., Ziganshina A.R., Yaroslavtseva N.V., Organic matter and mineral matrix of soils: modern approaches, definitions of terms and methods of study (review), Dokuchaev Soil Bulletin, 2023, Vol. 117, pp. 52–100, DOI: https://doi.org/10.19047/0136-1694-2023-117-52-100.
9. Anderson J.P.E., Domsch K.H., A phisiological method for the quantitative measurement of microbial biomass in soils, Soil Biology and Biochemistry, 1978, Vol. 10, No. 3, pp. 215–221, DOI: https://doi.org/10.1016/0038-0717(78)90099-8.
10. Barros N., Salgado J., Villanueva M., Rodriquez-Añón J., Proupin J., Feijóo S., Martín-Pastor M., Application of DSC–TG and NMR to study the soil organic matter, Journal of Thermal Analysis and Calorimetry, 2011, Vol. 104, No. 1, pp. 53–60, DOI: https://doi.org/10.1007/s10973-010-1163-4.
11. Bell S.M., Raymond S.J., Yin H., Jiao W., Goll D.S., Ciais P., Olivetti E., Leshyk V.O., Terrer C., Quantifying the recarbonization of post-agricultural landscapes, Nature Communications, 2023, Vol. 14, No. 1, p. 2139, DOI: https://doi.org/10.1038/s41467-023-37907-w.
12. Chen W.-H., Chu Y.-S., Liu J.-L., Chang J.-S, Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation, Energy Conversion and Management, 2018, Vol. 160, pp. 209– 219, DOI: https://doi.org/10.1016/j.enconman.2018.01.036.
13. Doležalová-Weissmannová H., Malý S., Brtnický M., Holátko J., Demyan M.S., Siewert C., Tokarski D., Kameníková E., Kučerík J., Practical applications of thermogravimetry in soil science: Part 5. Linking the microbial soil characteristics of grassland and arable soils to thermogravimetry data, Journal of Thermal Analysis and Calorimetry, 2023, Vol. 148, No. 4, pp. 1599–1611, DOI: https://doi.org/10.1007/s10973-022-11709-6.
14. Fernández J.M., Plante A.F., Leifeld J., Rasmussen C., Methodological considerations for using thermal analysis in the characterization of soil organic matter, Journal of Thermal Analysis and Calorimetry, 2011, Vol. 104, No. 1, pp. 389–398, DOI: https://doi.org/10.1007/s10973-010-1145-6.
15. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, pp. 35–115, DOI: https://doi.org/10.59327/IPCC/AR6-9789291691647.
16. Kučerík J., Tokarski D., Demyan M.S., Merbach I., Siewert C., Linking soil organic matter thermal stability with contents of clay, bound water, organic carbon and nitrogen, Geoderma, 2018, Vol. 316, pp. 38–46, DOI: https://doi.org/10.1016/j.geoderma.2017.12.001.
17. Kurganova I., Lopes de Gerenyu V., Six J., Kuzyakov Y., Carbon cost of collective farming collapse in Russia, Global Change Biology, 2014, Vol. 20, No. 3, pp. 938–947, DOI: https://doi.org/10.1111/gcb.12379.
18. Kurganova I., Merino A., Lopes de Gerenyu V., Barros N., Kalinina O., Giani L., Kuzyakov Y., Mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment: A chronosequence study on Phaeozems and Chernozems, Geoderma, 2019, Vol. 354, p. 113882, DOI: https://doi.org/10.1016/j.geoderma.2019.113882.
19. Pausch J., Kuzyakov Y., Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale, Global Change Biology, 2018, Vol. 24, No. 1, pp. 1–12, DOI: https://doi.org/10.1111/gcb.13850.
20. Plante A.F., Fernández J.M., Haddix M.L., Steinweg J.M., Conant R.T., Biological, chemical and thermal indices of soil organic matter stability in four grassland soils, Soil Biology and Biochemistry, 2011, Vol. 43, No. 5, pp. 1051–1058, DOI: https://doi.org/10.1016/j.soilbio.2011.01.024.
21. Plante A.F., Fernández J.M., Leifeld J., Application of thermal analysis techniques in soil science, Geoderma, 2009, Vol. 153, No. 1–2, pp. 1–10, DOI: https://doi.org/10.1016/j.geoderma.2009.08.016.
22. Ren W., Banger K., Tao B., Yang J., Huang Y., Tian H., Global pattern and change of cropland soil organic carbon during 1901–2010: Roles of climate, atmospheric chemistry, land use and management, Geography and Sustainability, 2020, Vol. 1, No.1, pp. 59–69, DOI: https://doi.org/10.1016/j.geosus.2020.03.001.
23. Sokolov D.A., Dmitrevskaya I.I., Pautova N.B., Lebedeva T.N., Chernikov V.A., Semenov V.M., A Study of Soil Organic Matter Stability Using Derivatography and Long-Term Incubation Methods, Eurasian Soil Science, 2021, Vol. 54, pp. 487–498, DOI: https://doi.org/10.1134/S1064229321040141.
24. Tokarski D., Wiesmeier M., Doležalová Weissmannová H., Kalbitz K., Scott Demyan M., Kučerík J., Siewert C., Linking thermogravimetric data with soil organic carbon fractions, Geoderma, 2020, Vol. 362, p. 114124, DOI: https://doi.org/10.1016/j.geoderma.2019.114124.
25. WRB. 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
Review
For citations:
Filimonenko E.A., Kurganova I.N., Dimitryuk E.A., Lopez de Gerenu V.O., Uporova M.A., Zorina S.Y., Sokolova L.G., Dorofeev N.V., Samokhina N.P., Lichko V.I., Khodjaeva A.K., Kuzyakov Y.V. Soil respiration activity and thermal stability of organic matter under the post-agricultural evolution of Haplic Luvisol. Dokuchaev Soil Bulletin. 2025;(124):91-115. (In Russ.) https://doi.org/10.19047/0136-1694-2025-124-91-115