Preview

Dokuchaev Soil Bulletin

Advanced search

Heavy metals in the Ulyuk-Bar gold deposit soils (Southern Urals)

https://doi.org/10.19047/0136-1694-2025-122-89-126

Abstract

The assessment of the leptosols composition and the increased concentrations of heavy metals in them at the Ulyuk-Bar gold deposit was carried out. The mineral components of the soils are represented by quartz, illite, kaolinite, goethite and iron-manganese nodules. The minerals concentrating of As, which represents the greatest potential danger in the deposit and exceeding (maximum allowable concentration) MAC by 159.5 times, are goethite, and rarely kaolinite. The chemical composition of soils is close to that of soil-forming sandstones. In general, in the process of soil formation, accumulation or minor removal occurs for most elements. The contents of As, Co, Pb, K, Zr, Cu, Mn, Zn, Ni exceed сlark for continental soils. The degree of mobility for soil elements decreases in the range Sb (46.25) – Ca (36.84) – S (31.48) – Sr (27.91) – Mn (15.38) – Pb (8.84) – Ba (5.41) – Mg (2.88) – Zn (2.70) – Ni (1.70) – P (1.55) – Cu (0.76) – Cr (0.45) – Si (0.42) – K (0.39) – Na (0.20) – Al (0.07) – Fe (0.05) – Co (0.05); Ti, V, Zr, As are immobile. The mobile forms of Mn are 2.22 times higher, the gross contents of S are 3.71 times higher than the MAC. Concentrations of heavy metals such as Fe, Mn, Sr, Ba and Cr in soil ammonium acetate extracts increase with increasing alkalinity of the salt extract, and Zn, Cu, Pb and Sb − acidity. To prevent the mobility of heavy metals to an environmentally sustainable level, an effective reclamation program should include a set of methods for selecting the optimal ratios of chemicals added to the soil.

About the Authors

G. М. Kazbulatova
Geology Institute of the UFRC RAS
Russian Federation

16/2 Karl Marx Str., Ufa 450077



S. V. Michurin
Geology Institute of the UFRC RAS
Russian Federation

16/2 Karl Marx Str., Ufa 450077



References

1. Astakhova N.V., Barii v zhelezomargantsevykh obrazovaniyakh Yaponskogo morya: osobennosti vydeleniya i vzaimootnoshenie s osnovnymi rudnymi fazami (Barium in ferromanganese crusts from the Sea of Japan: peculiarities of allocation and interrelation with main ore phases), Vestnik Instituta geologii Komi NTs UrO RAN, 2019, No. 3 (291), pp. 31−40.

2. Vinogradov A.P., Geokhimiya redkikh i rasseyannykh khimicheskikh elementov v pochvakh (The geochemistry of tare and dispersed chemical elements in soils), Moscow: Izd-vo Akad. nauk SSSR, 1957. 238 p.

3. Vodyanitskii Yu.N., Oksidy margantsa v pochvakh (soils manganese oxides), Moscow: Pochv. in-t im. V.V. Dokuchaeva, 2005, 95 p.

4. Vodyanitskii Yu.N., Tyazhelye metally i metalloidy v pochvakh (Heavy metals and metalloids on soils), Moscow: GNU Pochvennyi institut im. V.V. Dokuchaeva RASKhN, 2008, 85 p.

5. Vodyanitskii Yu.N., Soedineniya zheleza i ikh rol' v okhrane pochv (Iron compounds and their role in soils protection), Moscow: GNU Pochvennyi institut im. V.V. Dokuchaeva Rossel'khozakademii, 2010, 155 p.

6. Gavrilova I.P., Kasimov N.S., Praktikum po geokhimii landshafta (Practicum on landscape geochemistry), Moscow: Izdatel'stvo MGU, 1989, 72 p.

7. Iovcheva A.D., Semenkov I.N., Assessment of the barrier function of Chernozem and Luvisol under their experimental contamination by copper ions, Dokuchaev Soil Bulletin, 2023, Vol. 116, pp. 76–108, DOI: https://doi.org/10.19047/0136-1694-2023-116-76-108.

8. Kazbulatova G.M., Michurin S.V., Otsenka ekologicheskoi opasnosti zolotorudnogo mestorozhdeniya Ulyuk-Bar (Yuzhnyi Ural) (Environmental hazard assessment of the Uluk-Bar gold deposit (Southern Urals)), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2024, Vol. 335 (5), pp. 142–157.

9. Kazbulatova G.M., Michurin S.V., Karamova A.M., Geoekologicheskaya otsenka sostoyaniya poverkhnostnykh vod Avzyanskogo zolotorudnogo raiona Respubliki Bashkortostan (Geoecological assessment of the condition of surface waters of Avzyan gold region in the Republic of Bashkortostan), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2022, Vol. 333 (8), pp. 139–152.

10. Kozlova A.A., Khalbaev V.L., Aisueva T.S., Egodurov A.E., Nechaeva V.V., Mokrushina A.S., Chirkova E.G., Vinokurova A.V., Soderzhanie razlichnykh form zheleza v pochvakh Yuzhnogo Predbaikal'ya (Contents of different forms of iron in the soils of Southern Predbaikal'ye), Mezhdunarodnyi zhurnal prikladnykh i fundamental'nykh issledovanii, 2014, No. 5 (2), pp. 56–61.

11. Kostenkov N.M., Purtova L.N., Obshchie zakonomernosti formirovaniya pochv na otval'nykh porodakh i ikh gumusovoe sostoyanie (General laws of soils formation on the dump rock and its humus state), Vestnik KrasGAU, 2009, No. 6, pp. 17–22.

12. Kostenkov N.M., Purtova L.N., Posttekhnogennoe pochvoobrazovanie na otval'nykh porodakh kak faktor vosstanovleniya prirodnykh landshaftov (Posttechnogenic soil formation on dump grounds as the factor of natural landscapes restoration), Izvestiya Samarskogo nauchnogo tsentra RAN, 2010, No. 1 (4), pp. 1032–1038.

13. Lepokurova O.E., Ivanova I.S., Trifonov N.S., Kolubaeva Yu.V., Sokolov D.A., Rastvorennye formy migratsii gumusovykh kislot v poverkhnostnykh vodnykh ob"ektakh Yamalo-Nenetskogo avtonomnogo okruga (Dissolved forms of migration of humic substances in surface water bodies of the Yamal-Nenets autonomous district), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2022, Vol. 333 (5), pp. 56–69.

14. Matychenkov I.V., Khomyakov D.M., Pakhnenko E.P., Bocharnikova E.A., Matychenkov V.V., Mobile Si-rich compounds in the soil-plant system and methods for their determination, Moscow Univ. Soil Sci. Bull. Ser. 71, 2016, No. 3, pp. 120–128, DOI: https://doi.org/10.3103/S0147687416030054.

15. Ovsyannikova S.V., Analiz soderzhaniya podvizhnykh form margantsa v pochvakh (na primere Kemerovskoi oblasti) (Analysis of the content of mobile forms of manganese in soils (on the example of the Kemerovo region)), Global'naya energiya, 2011, No. 1 (117), pp. 184–189.

16. Osovetskii B.M., Moloshtanova N.E., Opisanie osadochnykh porod (Description of sedimentary rocks), Perm': Perm. un-t., 2006, 116 p.

17. Savich V.I., Belopukhov S.L., Kotenko M.E., Gukalov V.V., Il'icheva P.I., Fedorova T.A., Agroekologicheskaya otsenka mineralogicheskogo sostava pochv (Agroecological estimation of the mineralogical composition of the soil), Vestnik RUDN. Seriya: Agronomiya i zhivotnovodstvo, 2016, No. 3, pp. 30–39.

18. Sokolov D.A., Kulizhskii S.P., Loiko S.V., Domozhakova E.A., Ispol'zovanie skaniruyushchei elektronnoi mikroskopii dlya diagnostiki protsessov pochvoobrazovaniya na poverkhnosti otvalov kamennougol'nykh razrezov Sibiri (Using electronic scanning microscopy for diagnostics of soil-forming processes on the surface of coal-mine dumps in Siberia), Vestn. Tom. gos. un-ta. Biologiya, 2014, No. 3 (27), pp. 36–52.

19. Fedorov I.A., Taskina L.V., Gumusovye kisloty i ikh migratsionnye formy v vodakh ozer Vostochnogo Zabaikal'ya (Humic acids and their migration forms in the waters of the lakes of Eastern Transbaikalia), Khimiya v interesakh ustoichivogo razvitiya, 2020, Vol. 28 (5), pp. 515–526.

20. Kholodov V.A., Rogova O.B., Lebedeva M.P., Varlamov E.B., Volkov D.S., Ziganshina A.R., Yaroslavtseva N.V., Organic matter and mineral matrix of soils: modern approaches, definitions of terms and methods of study (review), Dokuchaev Soil Bulletin, 2023, Vol. 117, pp. 52–100, DOI: https://doi.org/10.19047/0136-1694-2023-117-52-100.

21. Shishov L.L., Tonkonogov V.D., Lebedeva I.I., Gerasimova M.I., Klassifikatsiya i diagnostika pochv Rossii (Classification and diagnostics of soils of Russia), Smolensk: Oykumena, 2004, 341 p.

22. Cabral Pinto M.M.S., Silva E.F., Silva M.M., Melo‐ Gonçalves P., Candeias C., Environmental risk assessment based on high-resolution spatial maps of potentially toxic elements sampled on stream sediments of Santiago, Cape Verde, Geosciences, 2014, Vol. 4 (4), pp. 297–315, DOI: https://doi.org/10.3390/geosciences4040297.

23. Cox S., Rollinson G., McKinley J., Mineralogical characterisation to improve understanding of oral bioaccessibility of Cr and Ni in basaltic soils in Northern Ireland, Journal of Geochemical Exploration, 2017, Vol. 183, pp. 166–177, DOI: https://doi.org/10.1016/j.gexplo.2017.02.006.

24. Dixon J.B., Golden D.C., Uzochukwu G.A., Chen C.C., Soil manganese oxides, In: Soil colloids and their associations in aggregates, Texas: Department of soil and crop sciences, 1990. Vol. 214, pp. 141–163, DOI: https://doi.org/10.1007/978-1-4899-2611-1_7.

25. Fernandez-Landero S., Fernandez-Caliani J.C., Giráldez M.I., Morales E., Barba-Brioso C., Gonzalez I., Soil contaminated with hazardous waste materials at Rio Tinto Mine (Spain) is a persistent secondary source of acid and heavy metals to the environment, Minerals, 2023, Vol. 13, pp. 456–477, DOI: https://doi.org/10.3390/min13040456.

26. IUSS Working Group WRB, International soil classification system for naming soils and creating legends for soil maps, 2022, 236 p.

27. Jinling X., Luuk K.K., Mingxia W., Juan X., Jingtao H., Yan L., Wenfeng T., Phosphate speciation on Al-substituted goethite: ATR-FTIR/2D-COS and CD-MUSIC modeling, Environ. Sci. Nano, 2019, Vol. 6, pp. 3625–3637.

28. Karimian N., Burton E., Johnston S., Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates, Environmental pollution, 2019, Vol. 254, pp. 113112–113122, DOI: https://doi.org/10.1016/j.envpol.2019.113112.

29. Li Yu., Zhang H., Chen X., Tu Ch., Luo Yo., Christie P., Distribution of heavy metals in soils of the Yellow River Delta: Concentrations in different soil horizons and source identification, Journal of soils and sediments, 2014, Vol. 14, pp. 1158–1168, DOI: https://doi.org/10.1007/s11368-014-0861-0.

30. Makarov D.V., Svetlov A.V., Goryachev A.A., Krasavtseva E.A., Denisova Yu.L., Masloboev V.A., Geochemical barriers for wastewater purification and recovery of nonferrous metals, Apatity: FRC KSC RAS, 2019, 53 p.

31. Mаnceau A., Marcus M.A., Tamura N., Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Applications of synchrotron radiation in low-temperature geochemistry and environmental science, Reviews in mineralogy and geochemistry, 2002, Vol. 49, pp. 341–428.

32. Morin G., Juillot F., Casiot C., Bruneel O., Persone J.-C., Elbaz-Рoulichet F., Leblanc M., Ildefonse P., Calas G., Bacterial formation of tooeleite and mixed arsenic (III) or arsenic (V)-iron (III) gels in the Carnoules acid mine drainage, France. A XANES, XRD, and SEM study, Environ. Sci. Technol, 2003, Vol. 37, pp. 1705–1712.

33. Norrish K., Taylor R., The isomorphous replacement of iron by aluminum in soil goethites, J. Soil Sci, 1961, Vol. 12 (2), pp. 294–306.

34. Paktunc D., Foster A., Laflamme G., Speciation and characterization of arsenic in Ketza river mine tailings using X-ray absorption spectroscopy, Environmental science and technology, 2003, Vol. 37 (10), pp. 2067–2074.

35. Pedersen H.D., Postma D., Jakobsen R., Release of arsenic associated with the reduction and transformation of iron oxides, Geochim. Cosmochim. Acta, 2006, Vol. 70, pp. 4116–4129.

36. Tume P., Cornejo O., Rubio C., Sepulveda B., Roca N., Bech J., Analysis and evaluation of concentrations of potentially toxic elements in landfills in the Araucania Region, Chile, Minerals, 2023, Vol. 13 (8), pp. 1033–1059, DOI: https://doi.org/10.3390/min13081033.

37. Elyahyaoui A., Razzouki B., El Hajjaji S., Bouhlassa S., Arsenic coagulation/flocculation with iron (III) hydroxide: Adsorption mechanisms and stability constants of surface complexes, International journal of development research, 2016, Vol. 6 (11), pp. 10013–10018.

38. Rietra R.P.J.J., Hiemstra T., van Riemsdijk W.H., Interaction between calcium and phosphate adsorption on goethite, Environ. Sci. Technol., 2001, Vol. 35 (16), pp. 3369–3374.

39. Schulze D., Kruger A., Segebade Ch., Stability and mobility of metal-humic complexes isolated from different soils, Journal of radioanalytical and nuclear chemistry, 2000, Vol. 244, pp. 51–53, DOI: https://doi.org/10.1023/A:1006758503784.

40. Shaaban M., Acidic soils, Planet Earth: scientific proposals to solve urgent issues, 2024, pp. 293–306, DOI: https://doi.org/10.1007/978-3-031-53208-5_13.

41. Shuqi Y., Xiaorui Ch., Xu C., Bing Y., Wei H., Influencing factors and environmental effects of interactions between goethite and organic matter: A critical review, Frontiers in environmental science, 2022, Vol. 10, 17 p., DOI: https://doi.org/10.3389/fenvs.2022.1023277.

42. Slawomir W., Makuchowska-Fryc J., Klos A., Ziembik Z., Ochedzan-Siodlak W., Role of calcium carbonate in the process of heavy metal biosorption from solutions: synergy of metal removal mechanisms, Scientific reports, 2022, Vol. 12 (1), pp. 17668–17682, DOI: https://doi.org/10.1038/s41598-022-22603-4.

43. Wang S., Mulligan C.N., Effect of natural organic matter on arsenic release from soils and sediments into groundwater, Environ. Geochem. Health, 2006, Vol. 28, pp. 197–214, DOI: https://doi.org/10.1007/s10653-005-9032-y.

44. Zhang L., McKinley J., Cooper M., Peng M., Wang Q., Song Y., Cheng H., A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China, Journal of geochemical exploration, 2020, Vol. 217, pp. 106557, DOI: https://doi.org/10.1016/j.gexplo.2020.106557.

45. Zhang L., Zhang Q., Zheng Y., Zheng M., Interaction of manganese oxides with multiple valences heavy metals in environmental remediation, Huanjing Kexue Xuebao. Acta Scientiae Circumstantiae, 2013, Vol. 33, pp. 1519–1526.


Supplementary files

Review

For citations:


Kazbulatova G.М., Michurin S.V. Heavy metals in the Ulyuk-Bar gold deposit soils (Southern Urals). Dokuchaev Soil Bulletin. 2025;(122):89-126. (In Russ.) https://doi.org/10.19047/0136-1694-2025-122-89-126

Views: 176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)