Diagnostics of hydrological properties of soils of the Sambian plains based on aerial photography and electromagnetic induction
https://doi.org/10.19047/0136-1694-2025-122-127-173
Abstract
The article focuses on studying the influence of the spatial heterogeneity of lithological and geomorphological conditions on the hydrological characteristics of the soils of the Sambian Plain using aerial photography and electromagnetic induction methods. From 2020 to 2022, at the “Pereleski” test site, topographic surveys were conducted using UAV, soil-forming material heterogeneity was diagnosed, and field measurements of particle size distribution, moisture content, and the degree of gleyization were carried out in reference soil profiles (n = 4). Additionally, the morphology of soil horizons and the degree of gleyization in additional sampling points (n = 18) were described. The method of electromagnetic induction profiling using the EM38-MK2 established a reliable strong correlation between silt content and apparent soil electrical conductivity (R² = 0.88). Multidimensional scaling enabled the ranking of all soil descriptions at the test site by the degree of gleyization, providing a quantitative assessment of the depth and duration of waterlogging in soil profile. Morphometric characteristics and electrical conductivity in the layers of 0–0.375 m; 0–0.75 m; and 0–1.5 m were compared with the calculated gleyization intensity index of soils. Linear regression analysis revealed a relationship that explains 81% of the variability in soil gleyization based on two factors: electrical conductivity in the 0–1.5 m layer and the topographical positional index within a 10 m radius. Consequently, soils were ranked according to the combined characteristics in a sequence of increasing gleyization intensity: Endogleyic Cambisols – Gleyic Albeluvisols– Haplic Gleysols, linked to the differences in their long-term average water regimes. The identified heterogeneity of micro- and mesorelief and the high variability of the soil-forming materials resulted in the alternation of these soils in the form of soil micro-mosaics, indicating the intra-field heterogeneity of the agroecological conditions of the test site.
About the Authors
P. M. ShilovRussian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
O. A. Antsiferova
Russian Federation
1 Sovetsky Prospekt, Kaliningrad 236022
References
1. Antsiferova O.A., Gidrologicheskii rezhim burozemov v agrolandshaftakh Sambiiskoi ravniny (Kaliningradskaya oblast') (Hydrological regime of cambisols in the agricultural landscape of the Sambia Plain (Kaliningrad region)), Pochvovedenie, 2022, No. 6, pp. 713–727, DOI: https://doi.org/10.31857/S0032180X22060028.
2. Antsiferova O.A., Gidrologicheskii rezhim i agroekologicheskaya otsenka pochv agrolandshaftov Sambiiskoi ravniny (Hydrological regime and agroecological assessment of soils of agrolandscapes of the Sambia Plain: monograph), Kaliningrad: Izd-vo FGBOU VO “KGTU”, 2022, 365 p.
3. Antsiferova O.A., Pochvy Zamlandskogo poluostrova i ikh antropogennoe izmenenie. Chast' 1. Faktory pochvoobrazovaniya. Pochvy podzolistogo i burozemnogo ryadov (Soils of the Zamland Peninsula and their anthropogenic change. Part 1. Factors of soil formation. Podzols and Cambisols series), Kaliningrad: Izd-vo KGTU, 2008, 397 p.
4. Antsiferova O.A., Pochvy Zamlandskogo poluostrova i ikh antropogennoe izmenenie. Chast' 2. Dernovo-gleevye, allyuvial'nye, bolotnye, postplanirovochnye, gorodskie pochvy. Struktura pochvennogo pokrova (Soils of the Zamland Peninsula and their anthropogenic change. Part 2. Umbrisols, Fluvisols, Histosols, post-planning and urban soils. Soil cover structure), Kaliningrad: Izd-vo KGTU, 2008a, 424 p.
5. Bolotov A.G. Gidrotermicheskoe sostoyanie pochv yugo-vostoka Zapadnoi Sibiri: dissertatsiya na soiskanie uchenoi stepeni doktora biologicheskikh nauk (Hydrothermal condition of soils in the south-east of Western Siberia, Dissertation of Doctor Biological Sciences), Moscow, 2017, 351 p.
6. Vadyunina A.F., Korchagina Z.A., Metody issledovaniya fizicheskikh svoistv pochv (Methods of research of physical properties of soils), Moscow: Agropromizdat, 1986, 416 p.
7. Vasil'ev I.S., Vodnyi rezhim podzolistykh pochv (Water regime of podzols), Trudy Pochvennogo instituta im. V.V. Dokuchaeva, 1950, Vol. XXXII, pp. 74–96.
8. Geograficheskii atlas Kaliningradskoi oblasti (Geographical atlas of the Kaliningrad region), Kaliningrad: Izd-vo KGU; TsNIT, 2002, 276 p.
9. Gerasimov I.P., Elementarnye pochvennye protsessy kak osnova dlya geneticheskoi diagnostiki pochv (Elementary soil processes as a basis for genetic diagnosis of soils), Pochvovedenie, 1973, No. 5, pp. 102–111.
10. Gerasimov I.P., Opyt geneticheskoi diagnostiki pochv SSSR na osnove elementarnykh pochvennykh protsessov (Experience of genetic diagnostics of soils of the USSR based on elementary soil processes), Pochvovedenie, 1975, No. 5, pp. 1–9.
11. Edinyi gosudarstvennyi reestr pochvennykh resursov Rossii. Versiya 1.0 (Unified State Register of soil resourses in Russia. Version 1.0), Moscow: Grif i K, 2014, 768 p.
12. Zavalishin A.A., Nadezhdin B.V., Pochvennyi pokrov Kaliningradskoi oblasti (Soil cover of the Kaliningrad region) In: Pochvy Kaliningradskoi oblasti (Soils of Kaliningrad region), Moscow: Izd-vo AN SSSR, 1961, pp. 5–130 (164 p.).
13. Zaidel'man F.R., L.V. Stepantsova, A.S. Nikiforova, Nikiforova A.S., Krasin N.V., Safronov S.B., Krasina T.V., Genezis i degradatsiya chernozemov Evropeiskoi Rossii pod vliyaniem pereuvlazhneniya. Sposoby zashchity i melioratsii (Genesis and degradation of chernozems due to excessive moistening in European Russia. The ways of their protection and improvement), Voronezh: Izdatel'stvo “Kvarta”, 2013, 352 p.
14. Zaidel'man F.R. Genezis i ekologicheskie osnovy melioratsii pochv i landshaftov (Genesis and ecological bases of soil-landscape reclamation), Moscow: KDU, 2009, 720 p.
15. Zaidel'man F.R., Gidrologicheskii rezhim pochv Nechernozemnoi zony (Hydrological regime of soils of the Non-Chernozem zone), Leningrad, 1985, 329 p.
16. Zaidel'man F.R., Melioratsiya pochv (Soil reclamation), Moscow: Moskovskii gosudarstvennyi universitet, 2003, 448 p.
17. Zaidel'man F.R., Metody ekologo-meliorativnykh izyskanii i issledovanii pochv (Methods of ecological and reclamation surveys of soils), Moscow: Koloss, 2008, 486 p.
18. Zaidel'man F.R., Stepantsova L.V., Nikiforova A.S., Krasin V.N., Dautokov I.M., Krasina T.V., Novoobrazovaniya (ortshteiny i psevdofibry) poverkhnostno-ogleennykh supeschanykh pochv severa Tambovskoi ravniny (Neoformations (nodules and placic layers) in surface-gleyed loamu sandy soils of the northern part of the Tambov Plain), Pochvovedenie, 2019, No. 5, pp. 544–557, DOI https://doi.org/10.1134/S0032180X19050125.
19. Zaidel'man F.R., Rezhim i usloviya melioratsii zabolochennykh pochv (Regime and conditions of reclamation of waterlogged soils), Moscow: Kolos, 1975, 320 p.
20. Zaidel'man F.R., Nikiforova A.S., Stepantsova L.V., Krasin V.N., Safronov S.B., Ekologo-gidrologicheskie i geneticheskie osobennosti chernozemovidnykh pochv zamknutykh zapadin severa Tambovskoi nizmennosti (Ecological–hydrological and genetic features of chernozem-like soils of closed depressions in the Northern Tambov Lowland), Pochvovedenie, 2008, No. 2, pp. 198–213.
21. Zeiliger A.M., Muzalevskii K.V., Zinchenko E.V., Ermolaeva O.S., Melikhov V.V., Polevoe testirovanie metoda kartograficheskogo modelirovaniya vlagozapasov poverkhnostnogo sloya pochvennogo pokrova, osnovannogo na dannykh radarnoi s"emki Sentinel-1 i tsifrovoi modeli rel'efa (Field testing of the cartographic modeling of soil water content of the surface layer of soil cover based on Sentinel-1 radar survey and digital elevation model), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 113–128, DOI: https://doi.org/10.21046/2070-7401-2020-17-4-113-128.
22. Kireicheva L.V., Biosferno-ekologicheskoe obosnovanie kompleksnykh melioratsii (Biospheric and ecological substantiation of complex land reclamation), Prirodoobustroistvo, 2023, No. 2, pp. 15–22, DOI: https://doi.org/10.26897/1997-6011-2023-2-15-22.
23. Klassifikatsiya i diagnostika pochv SSSR (Classification and diagnostics of soils of the USSR), Moscow: Kolos, 1977, 221 p.
24. Pozdnyakov A.I., Eliseev P.I., Zavisimosti udel'nogo elektricheskogo soprotivleniya ot nekotorykh svoistv antropogenno-preobrazovannykh legkikh pochv agrolandshaftov gumidnoi zony (Relationships between Specific Electrical Resistance and Certain Properties of Anthropogenically Transformed Soils in Agro-Landscapes of the Humid Zone), Vestnik Orenburgskogo gosudarstvennogo universiteta, 2012, No. 10(146), pp. 98–104.
25. Pozdnyakov A.I., Pozdnyakova L.A., Pozdnyakova A.D., Statsionarnye elektricheskie polya v pochvakh (Stationary Electric Fields in Soils), Moscow: KMK Scientific Press LTD, 1996, 358 p.
26. Puzachenko Yu.G., Fedyaeva M.V., Kozlov D.N., Puzachenko M.Yu., Metodologicheskie osnovaniya otobrazheniya elementarnykh geosistemnykh protsessov (Methodological Foundations for Representing Elementary Geosystem Processes), Sovremennye estestvennye i antropogennye protsessy v pochvakh i geosistemakh, Moscow: Pochv. in-t im. V.V. Dokuchaeva, 2006, pp. 13–52.
27. Rode A.A., Osnovy ucheniya o pochvennoi vlage. Metody izucheniya vodnogo rezhima pochv (Fundamentals of Soil Moisture Research. Methods of studying soil water regime), Leningrad: Gidrometeoizdat, 1969, 287 p.
28. Romanova T.A., Vodnyi rezhim v geneticheskoi kharakteristike pochv gumidnoi zony (Water Regime in the Genetic Characterization of Soils in the Humid Zone), Pochvovedenie, 1994, No. 4, pp. 32–39.
29. Romanova T.A., Vodnyi rezhim pochv Belarusi (Water Regime of Soils in Belarus), Minsk, 2015, 144 p.
30. Subbotin A.I., Dygalo V.S., Mnogoletnie kharakteristiki gidrometeorologicheskogo rezhima v Podmoskov'e (Materialy nablyudenii Podmoskovnoi vodnobalansovoi stantsii) (Long-term Characteristics of the Hydrometeorological Regime in the Moscow Region (Observational Data from the Moscow Water Balance Station)), Moscow, 1982, 220 p.
31. FGBU “Upravlenie “Kaliningradmeliovodkhoz”, URL: https://inform-raduga.ru/fgbu/86.
32. Abbaszadeh P., Moradkhani H., Gavahi K., Kumar S., Hain C., Zhan X., Duan Q., Peters-Lidard C., Karimiziarani S., High-resolution SMAP satellite soil moisture product: Exploring the opportunities, Bulletin of the American Meteorological Society, 2021, Vol. 102, No. 4, pp. 309–315, DOI: https://doi.org/10.1175/BAMS-D-21-0016.1.
33. Ågren A.M., Larson J., Paul S.S., Laudon H., Lidberg W., Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape, Geoderma, 2021, Vol. 404, p. 115280, DOI: https://doi.org/10.1016/j.geoderma.2021.115280.
34. Babaeian E., Sadeghi M., Jones S.B., Montzka C., Vereecken H., Tuller M., Ground, proximal, and satellite remote sensing of soil moisture, Reviews of Geophysics, 2019, Vol. 57, No. 2, pp. 530–616, DOI: https://doi.org/10.1029/2018RG000618.
35. Bore T., Schwing M., Llano M., Speer J., Scheuermann A., Wagner N., A new broadband dielectric model for simultaneous determination of water saturation and porosity, IEEE Transactions on Geoscience and Remote Sensing, 2018, Vol. 56, No. 8, pp. 4702–4713, DOI: https://doi.org/10.1109/TGRS.2018.2835447.
36. Borg I., Groenen P.J.F., Modern multidimensional scaling: Theory and applications, New York: Springer Science & Business Media, 2005, 472 p.
37. Bughici T., Skaggs T., Corwin D.L., Scudiero E., Ensemble HYDRUS-2D modeling to improve apparent electrical conductivity sensing of soil salinity under drip irrigation, Agricultural Water Management, 2022, Vol. 272, p. 107813, DOI: https://doi.org/10.1016/j.agwat.2022.107813.
38. Claes N., Paige G., Grana D., Parsekian A.D., Parameterization of a hydrologic model with geophysical data to simulate observed subsurface return flow paths, Vadose Zone Journal, 2020, Vol. 19, No. 1, p. e20024. DOI: https://doi.org/10.1002/vzj2.20024.
39. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J., System for automated geoscientific analyses (SAGA) v. 2.1.4, Geoscientific Model Development, 2015, Vol. 8, No. 7, pp. 1991–2007, DOI: https://doi.org/10.5194/gmd-8-1991-2015.
40. Corwin D.L., Scudiero E., Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors, Advances in agronomy, 2019, Vol. 158, pp. 1–130, DOI: https://doi.org/10.1016/bs.agron.2019.07.001.
41. Das N.N., Entekhabi D., Dunbar R.S., Chaubell M.J., Colliander A., Yueh S., Jagdhuber T., Chen F., Crow W., O'Neill P.E., Walker J.P., Berg A., Bosch D.D., Caldwell T., Cosh M.H., Collins C.H., Lopez-Baeza E., Thibeault M., The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product, Remote Sensing of Environment, 2019, Vol. 233, p. 111380, DOI: https://doi.org/10.1016/j.rse.2019.111380.
42. Dietrich S., Weinzettel P.A., Varni M., Infiltration and drainage analysis in a heterogeneous soil by electrical resistivity tomography, Soil Science Society of America Journal, 2014, Vol. 78, No. 4, pp. 1153–1167, DOI: https://doi.org/10.2136/sssaj2014.02.0062.
43. El-Naggar A.G., Hedley C.B., Roudier P., Horne D., Clothier B.E., Imaging the electrical conductivity of the soil profile and its relationships to soil water patterns and drainage characteristics, Precision Agriculture, 2021, Vol. 22, No. 4, pp. 1045–1066, DOI: https://doi.org/10.1007/s11119-020-09763-x.
44. Fan B., Liu X., Zhu Q., Qin G., Li J., Lin H., Guo L., Exploring the interplay between infiltration dynamics and Critical Zone structures with multiscale geophysical imaging: A review, Geoderma, 2020, Vol. 374, p. 114431, DOI: https://doi.org/10.1016/j.geoderma.2020.114431.
45. Fletcher R.S., Temporal Comparisons of Apparent Electrical Conductivity: A Case Study on Clay and Loam Soils in Mississippi, Agricultural Sciences, 2022, Vol. 13, No. 8, pp. 936–946, DOI: https://doi.org/10.4236/as.2022.138058.
46. Friedman S.P., Soil properties influencing apparent electrical conductivity: a review, Computers and electronics in agriculture, 2005, Vol. 46, No. 1–3, pp. 45–70, DOI: https://doi.org/10.1016/j.compag.2004.11.001.
47. EM38–MK2 ground conductivity meter operating manual. Geonics Ltd, 2009, 42 p.
48. Gillin C.P., Bailey S.W., McGuire K.J., Gannon J.P., Mapping of hydropedologic spatial patterns in a steep headwater catchment, Soil Science Society of America Journal, 2015, Vol. 79, No. 2, pp. 440–453, DOI: https://doi.org/10.2136/sssaj2014.05.0189.
49. Heil K., Schmidhalter U., The application of EM38: Determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology, Sensors, 2017, Vol. 17, No. 11, p. 2540, DOI: https://doi.org/10.3390/s17112540.
50. Huang J., Ramamoorthy P., McBratney A.B., Bramley H., Soil water extraction monitored per plot across a field experiment using repeated electromagnetic induction surveys, Soil Systems, 2018, Vol. 2, No. 1, p. 11, DOI: https://doi.org/10.3390/soilsystems2010011.
51. Lausch A., Zacharias S., Dierke C., Pause M., Kühn I., Doktor D., Dietrich P., Werban U., Analysis of vegetation and soil patterns using hyperspectral remote sensing, EMI, and gamma-ray measurements, Vadose Zone Journal, 2013, Vol. 12, No. 4, pp. 1–15. DOI: https://doi.org/10.2136/vzj2012.0217.
52. Liu J., Pattey E., Nolin M.C., Miller J.R., Ka O., Mapping within-field soil drainage using remote sensing, DEM and apparent soil electrical conductivity, Geoderma, 2008, Vol. 143, No. 3–4, pp. 261–272, DOI: https://doi.org/10.1016/j.geoderma.2007.11.011.
53. Martini E., Werban U., Zacharias S., Pohle M., Dietrich P., Wollschläger U., Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: Validation with data from a wireless soil moisture monitoring network, Hydrology and Earth System Sciences, 2017, Vol. 21, No. 1, pp. 495–513, DOI: https://doi.org/10.5194/hess-21-495-2017.
54. McCune B., Grace J.B., Analysis of ecological communities, Gleneden Beach: MjM Software Design, 2002, 300 p.
55. McNeill J.D., Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN-6, Geonics Ltd, 1980, 15 p.
56. O’Brien L., Learning Shiny with the Spline Tool, 2017, URL: https://obrl-soil.github.io/posts/2017-10-22_learning-shiny.
57. Robinson D.A., Campbell C.S., Hopmans J.W., Hornbuckle B.K., Jones S.B., Knight R., Ogden F., Selker J., Wendroth O., Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review, Vadose zone journal, 2008, Vol. 7, No. 1, pp. 358–389, DOI: https://doi.org/10.2136/vzj2007.0143.
58. Rossel R.A.V., Adamchuk V.I., Sudduth K.A., McKenzie N.J., Lobsey C.R., Proximal soil sensing: An effective approach for soil measurements in space and time, Advances in agronomy, 2011, Vol. 113, pp. 243–291, DOI: https://doi.org/10.1016/B978-0-12-386473-4.00010-5.
59. Sadeghi M., Babaeian E., Tuller M., Jones S.B., The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations, Remote sensing of environment, 2017, Vol. 198, pp. 52–68, DOI: https://doi.org/10.1016/j.rse.2017.05.041.
60. Scudiero E., Corwin D.L., Markley P.T., Pourreza A., Rounsaville T., Bughici T., Skaggs T.H., A system for concurrent on-the-go soil apparent electrical conductivity and gamma-ray sensing in micro-irrigated orchards, Soil and Tillage Research, 2024, Vol. 235, p. 105899, DOI: https://doi.org/10.1016/j.still.2023.105899.
61. Shaukat H., Flower K.C., Leopold M., Quasi-3D mapping of soil moisture in agricultural fields using electrical conductivity sensing, Agricultural Water Management, 2022, Vol. 259, p. 107246, DOI: https://doi.org/10.1016/j.agwat.2021.107246.
62. Tavakol A., Mcdonough K., Rahmani V., Hutchinson S.L., Hutchinson J.M.S., The soil moisture data bank: The ground-based, model-based, and satellite-based soil moisture data, Remote Sensing Applications: Society and Environment, 2021, Vol. 24, p. 100649, DOI: https://doi.org/10.1016/j.rsase.2021.100649.
63. Triantafilis J., Lesch S., Lau K., Buchanan S., Field level digital soil mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model, Soil Research, 2009, Vol. 47, No. 7, pp. 651–663, DOI: https://doi.org/10.1071/SR08240.
64. Vergopolan N., Chaney N.W., Pan M., Sheffield J., Beck H., Ferguson C.R., Torres-Rojas L., Sadri S., Wood E.F., SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US, Scientific Data, 2021, Vol. 8, No. 1, p. 264, DOI: https://doi.org/10.1038/s41597-021-01050-2.
65. Visconti F., De Paz J.M., A semi-empirical model to predict the EM38 electromagnetic induction measurements of soils from basic ground properties, European Journal of Soil Science, 2021, Vol. 72, No. 2, pp. 720–738, DOI: https://doi.org/10.1111/ejss.13044.
66. Xu X., Huang G., Zhan H., Qu Z., Huang Q., Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas, Journal of Hydrology, 2012, Vol. 412, pp. 170–181, DOI: https://doi.org/10.1016/j.jhydrol.2011.07.002.
67. Ye N., Hills J., Walker J.P., Yeo I.-Y., Jackson T.J., Kerr Y., Kim E., Mcgrath A., Popstefanija I., Goodberlet M., Toward P-band passive microwave sensing of soil moisture, IEEE Geoscience and Remote Sensing Letters, 2020, Vol. 18, No. 3, pp. 504–508, DOI: https://doi.org/10.1109/LGRS.2020.2976204.
68. Zare E., Li N., Khongnawang T., Farzamian M., Triantafilis J., Identifying potential leakage zones in an irrigation supply channel by mapping soil properties using electromagnetic induction, inversion modelling and a support vector machine, Soil Systems, 2020, Vol. 4, No. 2, p. 25, DOI: https://doi.org/10.3390/soilsystems4020025.
69. Zeyliger A., Chinilin A., Ermolaeva O., Spatial interpolation of gravimetric soil moisture using EM38-mk induction and ensemble machine learning (case study from dry steppe zone in Volgograd region), Sensors, 2022, Vol. 22, No. 16, p. 6153, DOI: https://doi.org/10.3390/s22166153.
70. Zhu A.X., Liu F., Li B-L, Tao P., Qin C.-Z., Liu G., Wang Y., Yaning C., Ma X., Qi F., Zhou C., Differentiation of soil conditions over low relief areas using feedback dynamic patterns, Soil Science Society of America Journal, 2010, Vol. 74, No. 3, pp. 861–869, DOI: https://doi.org/10.2136/sssaj2008.0411.
71. Zhu Q., Lin H., Doolittle J., Repeated electromagnetic induction surveys for determining subsurface hydrologic dynamics in an agricultural landscape, Soil Science Society of America Journal, 2010, Vol. 74, No. 5, pp. 1750–1762, DOI: https://doi.org/10.2136/sssaj2010.0055.
Review
For citations:
Shilov P.M., Antsiferova O.A. Diagnostics of hydrological properties of soils of the Sambian plains based on aerial photography and electromagnetic induction. Dokuchaev Soil Bulletin. 2025;(122):127-173. (In Russ.) https://doi.org/10.19047/0136-1694-2025-122-127-173