Preview

Dokuchaev Soil Bulletin

Advanced search

The chemical structure of the organic matter of typical chernozems of various farming technologies

https://doi.org/10.19047/0136-1694-2025-125-244-273

Abstract

The transition to sustainable agriculture involves the adoption of soil-saving technologies, such as no-till (NT), as an alternative to conventional tillage (CT). The introduction of NT fundamentally alters the dynamics of plant residue input and decomposition; however, its effects on the molecular composition of soil organic matter (SOM) remain insufficiently studied. This study aimed to conduct a comparative assessment of the influence of NT and CT on the chemical structure of SOM in typical chernozems. Soil samples were collected from 0–10 cm and 10–20 cm depths in the 8-year field experiment with a four-course grain crop rotation under NT and CT management. Standard soil chemical properties (pH, available phosphorus and potassium, total nitrogen, and organic carbon) were analyzed. The chemical structure of SOM was characterized using Fourier-transform infrared (FTIR) spectroscopy and analytical pyrolysis. The molecular structure of SOM demonstrated the most pronounced dependence on the tillage practice compared to all other measured properties. The transformation under NT was characterized by the accumulation of carbohydrates and products of their microbial metabolism. In contrast, CT led to the dominance of recalcitrant compounds within the passive pool, which are not involved in active microbial transformation. Correlation analysis revealed that the trends of accumulation of organic carbon under NT is associated with the increased contribution of carbohydrates and phenolic compounds to the SOM composition.

About the Authors

Yu. R. Farkhodov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



I. V. Danilin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



V. P. Belobrov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



N. R. Ermolaev
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



S. A. Yudin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



I. A. Nadutkin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



Sh. A. Hamatnurov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



M. N. Stroykova
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



V. I. Lazarev
Federal Agricultural Kursk Research Center
Russian Federation

70Б Karl Marx Str., Kursk 305021



V. A. Kholodov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



References

1. Aleksandrovsky A.L., Aleksandrovskaya E.I., Evolyutsiya pochv i geograficheskaya sreda (Evolution of soils and geographical environment), Moscow: Nauka, 2005, 223 p.

2. Belobrov V.P., Yudin S.A., Aidiev A.Ya., N.R. E., Lebedeva M.P., Abrosimov K.N., Borisochkina T.I., Voronin A.Ya., Plotnikova O.O., Chernozem tipichnyy. pryamoy posev, Kurskaya oblast'. opyt, rotatsiya 1.1 (Typical chernozem. No-till, Kursk region. experience, rotation 1.1), A.L. Ivanov (Ed.), Moscow: GEOS, 2021, 123 p.

3. Dridiger V.K., Ivanov A.L., Belobrov V.P., Kutovaya O.V., Vosstanovleniye svoystv pochv v tekhnologii pryamogo poseva (Restoration of soil properties in no-till technology), Soil Science, 2020, No. 9, pp. 1111–1120.

4. Ivanov A.L., Kulintsev V.V., Dridiger V.K., Belobrov V.P., O tselesoobraznosti osvoyeniya sistemy pryamogo poseva na chernozemakh Rossii (On the feasibility of developing a direct sowing system on Russian chernozems), Achievements of science and technology of the agro-industrial complex, 2021, Vol. 35, No. 4, pp. 8–16.

5. Ivanov A.L., Kust G.S., Donnik I.M., Bedritsky A. I., Bagirov V.A., Kozlov D.N., Savin I.Yu., Alymbaeva Zh.B., Andreev S.G., Andreeva O.V., Global'nyy klimat i pochvennyy pokrov Rossii: opustynivaniye i degradatsiya zemel', institutsional'nyye, infrastrukturnyye, tekhnologicheskiye mery adaptatsii (sel'skoye i lesnoye khozyaystvo) (Global climate and soil cover in Russia: desertification and land degradation, institutional, infrastructural, technological adaptation measures (agriculture and forestry)), Vol. 2, Moscow: OOO “Izdatelstvo MBA”, 2019, 476 p.

6. Ivanov A.L., Savin I.Yu., Stolbovoy V.S., Dukhanin A.Yu., Kozlov D.N., Bamatov I.M., Global climate and soil cover – implications for land use in Russia, Dokuchaev Soil Bulletin, 2021, Vol. 107, pp. 5–32, DOI: https://doi.org/10.19047/0136-1694-2021-107-5-32.

7. Kiryushin V.I., Driediger V.K., Vlasenko A.N., Vlasenko N.G., Kozlov D.N., Kiryushin S.V., Konishchev A.A., Metodicheskiye rekomendatsii po razrabotke minimal'nykh sistem obrabotki pochvy i pryamogo poseva (Methodological recommendations for the development of minimal tillage systems and no-till), Moscow: : OOO “Izdatelstvo MBA”, 2019, 136 p.

8. Pansyu M., Goterou J., Analiz pochvy. Spravochnik. Mineralogicheskiye, organicheskiye i neorganicheskiye metody analiza (Soil analysis. Directory. Mineralogical, organic and inorganic methods of analysis), St. Petersburg: TsOP “Profession”, 2014, 800 p.

9. Rozentsvet O.A., Fedoseeva E.V., Terekhova V.A., Lipidnyye biomarkery v ekologicheskoy otsenke pochvennoy bioty: analiz zhirnykh kislot (Lipid biomarkers in the ecological assessment of soil biota: analysis of fatty acids), Uspekhi sovremennoy biologii Advances in modern biology, 2019, Vol. 139, No. 2, pp. 161–177.

10. Stolbovoy V.S., Grebennikov A.M., Ogleznev A.K., Ivanov A.L., Ilyin L.I., Kolesnikova L.G., Petrosyan R.D., Shilov P.M., Fil P.P., Korchagin A.A., Reyestr indikatorov kachestva pochv sel'skokhozyaystvennykh ugodiy Rossiyskoy Federatsii. Versiya 1.0 (Register of indicators of soil quality in agricultural lands of the Russian Federation. Version 1.0), Ivanovo: “PresSto”, 2021, 259 p.

11. Stolbovoy V.S., Molchanov E.N., Yedinyy gosudarstvennyy reyestr pochvennykh resursov Rossii kak model' prostranstvennoy organizatsii pochvennogo pokrova (Unified state register of soil resources of Russia as a model of spatial organization of soil cover), Proceedings of the Russian Academy of Sciences. Geographical series, 2015, No. 5, pp. 135–143.

12. Frid A.S. et al., Zonal'no-provintsial'nyye normativy izmeneniy agrokhimicheskikh, fiziko-khimicheskikh i fizicheskikh pokazateley osnovnykh pakhotnykh pochv territorii Rossii pri antropogennykh vozdeystviyakh (Zonal-provincial standards for changes in agrochemical, physicochemical and physical indicators of the main arable soils of the territory of Russia under anthropogenic influences), Moscow: V.V. Dokuchaev Soil Science Institute, 2010, 176 p.

13. Kholodov V.A., Rogova O.B., Lebedeva M.P., Varlamov E.B., Volkov D.S., Ziganshina A.R., Yaroslavtseva N.V., Organic matter and mineral matrix of soils: modern approaches, definitions of terms and methods of study (review), Dokuchaev Soil Bulletin, 2023, Vol. 117, pp. 52–100, DOI: https://doi.org/10.19047/0136-1694-2023-117-52-100.

14. Kholodov V.A., Farkhodov Yu.R., Yaroslavtseva N.V., Aidiev A.Yu., Lazarev V.I., Ilyin B.S., Ivanov A.L., Kulikova N.A., Termolabil'noye i termostabil'noye organicheskoye veshchestvo chernozemov raznogo zemlepol'zovaniya (Thermolabile and thermostable organic matter of chernozems of different land uses), Pochvovedeniye, 2020, Vol. 8, pp. 970–982.

15. Kholodov V.A., Yaroslavtseva N.V., Agregaty i organicheskoye veshchestvo pochv vosstanavlivayushchikhsya tsenozov (Aggregates and organic matter of soils of recovering cenoses), Moscow: GEOS, 2021, 119 p.

16. Yudin S.A., Plotnikova O.O., Belobrov V.P., Lebedeva M.P., Abrosimov K.N., Ermolaev N.R., Kolichestvennaya kharakteristika mikrostroyeniya tipichnykh chernozemov pri ispol'zovanii raznykh agrotekhnologiy (Quantitative characteristics of the microstructure of typical chernozems using different agricultural technologies), Pochvovedeniye, 2023, Vol. 6, pp. 774–786.

17. GOST 26423-85, Metody opredeleniya udel'noy elektricheskoy provodimosti, rN i plotnogo ostatka vodnoy vytyazhki (Methods for determining specific electrical conductivity, pH and solid residue of aqueous extract), 1986.

18. GOST 26483-85, Pochvy. Prigotovleniye solevoy vytyazhki i opredeleniye yeye pH po metodu TSINAO (Soils. Preparation of a salt extract and determination of its pH using the TsINAO method), 1986.

19. GOST 26205-91, Pochvy. Opredeleniye podvizhnykh soyedineniy fosfora i kaliya po metodu Machigina v modifikatsii (Soils. Determination of mobile compounds of phosphorus and potassium using the Machigin method modified by TsINAO), 1993.

20. GOST 26423-85, Pochvy. Metody opredeleniya udel'noy elektricheskoy provodimosti, pH i plotnogo ostatka vodnoy vytyazhki (Soils. Methods for determining specific electrical conductivity, pH and solid residue of aqueous extract), 1986, 7 p.

21. GOST 26483-85, Pochvy. Prigotovleniye solevoy vytyazhki i opredeleniye yeye pH po metodu TSINAO (Soils. Preparation of salt extract and determination of its pH using the TsINAO method), 1986, 7 p.

22. Aksenov A.A. et al., Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data, Nature Biotechnology, 2021, Vol. 39, No. 2, pp. 169–173.

23. Aziz I., Mahmood T., Islam K.R., Effect of long term no-till and conventional tillage practices on soil quality, Soil and Tillage Research, 2013, Vol. 131, pp. 28–35.

24. Blanco-Canqui H., Lal R., Mechanisms of carbon sequestration in soil aggregates Critical, Reviews in Plant Sciences, 2004, Vol. 23, No. 6, pp. 481–504.

25. Blevins R.L., Cook D., Phillips S.H., Phillips R.E., Influence of no-tillage on soil moisture, Agronomy Journal, 1971, Vol. 63, No. 4, pp. 593–596.

26. Collard F.-X., Blin J., A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renewable and Sustainable Energy Reviews, 2014, Vol. 38, pp. 594–608.

27. Dago N.D. et. al., A quick computational statistical pipeline developed in r programing environment for agronomic metric data analysis, 2019, Vol. 9, No. 4, pp. 22–44.

28. De la Rosa J.M., Gonzalez-Perez J.A., Gonzalez-Vazquez R., Knicker H., Lopez-Capel E., Manning D.A. C., Gonzalez-Vila F.J., Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest, Catena, 2008, Vol. 74, No. 3, pp. 296–303.

29. Huang Y., Eglinton G., Van der Hage E.R. E., Boon J.J., Bol R., Ineson P., Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques, European Journal of Soil Science, 1998, Vol. 49, No. 1, pp. 1–15.

30. ISO. ISO 10694:1995, Soil quality, Determination of organic and total carbon after dry combustion (elementary analysis), 1995.

31. Kan Z.-R., Liu W.-X., Liu W.-S., Lal R., Dang Y.P., Zhao X., Zhang H.-L., Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective, Global Change Biology, 2022, Vol. 28, No. 3, pp. 693–710.

32. Kassambara A., Mundt F., factoextra: Extract and visualize the results of multivariate data analyses, 2022, URL: https://cran.r-project.org/web/packages/factoextra.

33. Margenot A.J., Calderón F.J., Bowles T.M., Parikh S.J., Jackson L.E., Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields, Soil Science Society of America Journal, 2015, Vol. 79, No. 3, pp. 772–782.

34. Murphy D.V., Cookson W.R., Braimbridge M., Marschner P., Jones D.L., Stockdale E.A., Abbott L.K., Relationships between soil organic matter and the soil microbial biomass (size, functional diversity, and community structure) in crop and pasture systems in a semi-arid environment, Soil Research, 2011, Vol. 49, No. 7, pp. 582–594.

35. Ndzelu B.S., Dou S., Zhang X., Zhang Y., Molecular composition and structure of organic matter in density fractions of soils amended with corn straw for five years, Pedosphere, 2023, Vol. 33, No. 2, pp. 372–380.

36. Plaza C., Courtier-Murias D., Fernández J.M., Polo A., Simpson A.J., Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: A central role for microbes and microbial by-products in C sequestration, Soil Biology and Biochemistry, 2013, Vol. 57, pp. 124–134.

37. Moldoveanu S.C. (Ed.), Pyrolysis of organic molecules: applications to health and environmental issues, Amsterdam: Elsevier Science Bv, 2019, 711 p.

38. Rumpel C., González-Pérez J.A., Bardoux G., Largeau C., Gonzalez-Vila F.J., Valentin C., Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils, Organic Geochemistry, 2007, Vol. 38, No. 6, pp. 911–920.

39. Saiz-Jimenez C., De Leeuw J.W., Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography-mass spectrometry, Journal of Analytical and Applied Pyrolysis, 1986, Vol. 9, No. 2, pp. 99–119.

40. Šimon T., Javůrek M., Mikanová O., Vach M., The influence of tillage systems on soil organic matter and soil hydrophobicity, Soil and Tillage Research, 2009, Vol. 105, No. 1, pp. 44–48.

41. Spargo J.T., Cavigelli M.A., Alley M.M., Maul J.E., Buyer J.S., Sequeira C.H., Follett R.F., Changes in soil organic carbon and nitrogen fractions with duration of no-tillage management, Soil Science Society of America Journal, 2012, Vol. 76, No. 5, pp. 1624–1633.

42. Van Boxtel G., Laboissière R., Wilhelm H.D., gsignal: Signal processing, 2021, URL: https://github.com/gjmvanboxtel/gsignal.

43. Vieira F.C.B., Bayer C., Zanatta J.A., Dieckow J., Mielniczuk J., He Z.L., Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems, Soil and Tillage Research, 2007, Vol. 96, No. 1, pp. 195–204.

44. Vives-Peris V., de Ollas C., Gómez-Cadenas A., Pérez-Clemente R.M., Root exudates: from plant to rhizosphere and beyond, Plant Cell Reports, Vol. 39, No. 1, pp. 3–17.

45. Volkov D.S., Rogova O.B., Proskurnin M.A., Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities, Agronomy, 2021, Vol. 11, No. 9, p. 189.

46. Weil R., Magdoff F., Significance of soil organic matter to soil quality and health, Soil organic matter in sustainable agriculture, 2004, pp. 1–43.

47. Wickham H., ggplot2: Elegant graphics for data analysis, New York: Springer-Verlag, 2016.

48. Wickham H., François R., Henry L., Müller K., Vaughan D., dplyr: A grammar of data manipulation. R package version 1.1.4, 2023, URL: https://github.com/tidyverse/dplyr.

49. Wynn J.G., Harden J.W., Fries T.L., Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin, Geoderma, 2006, Vol. 131, No. 1, pp. 89–109.

50. Yang S., Jansen B., Absalah S., Kalbitz K., Chunga Castro F.O., Cammeraat E.L.H., Soil organic carbon content and mineralization controlled by the composition, origin and molecular diversity of organic matter: A study in tropical alpine grasslands, Soil and Tillage Research, 2022, Vol. 215, pp. 105–203.

51. Zhao C., Jiang E., Chen A., Volatile production from pyrolysis of cellulose, hemicellulose and lignin, Journal of the Energy Institute, 2017, Vol. 90, No. 6, pp. 902–913.


Supplementary files

Review

For citations:


Farkhodov Yu.R., Danilin I.V., Belobrov V.P., Ermolaev N.R., Yudin S.A., Nadutkin I.A., Hamatnurov Sh.A., Stroykova M.N., Lazarev V.I., Kholodov V.A. The chemical structure of the organic matter of typical chernozems of various farming technologies. Dokuchaev Soil Bulletin. 2025;(125):244-273. (In Russ.) https://doi.org/10.19047/0136-1694-2025-125-244-273

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)