Preview

Dokuchaev Soil Bulletin

Advanced search

Soil carbon sequestration in the agro-landscapes: the food imperative of the climate agenda

https://doi.org/10.19047/0136-1694-2025-124-10-69

Abstract

Indicative data from Russian and international literature sources on the extent of carbon sequestration by terrestrial ecosystems, mainly soils, at the global and regional levels are presented. It was noted, however, that these estimates were too approximate, highly debatable and require reliable experimental verification. It was suggested that close to real amounts of soil carbon sequestration in Russia and in the World will be obtained only in the future, with using data from long-term monitoring studies based on modern approaches and methods, including long-term field experiments. The terms of “soil carbon sequestration” were considered and a critical analysis of these definitions was given. Significant differences between the terms “soil carbon sequestration” and “soil carbon accrual” were noted, as well as the need to introduce into scientific discourse the term of “soil carbon depositing”, emphasizing the long-term preservation of carbon in the soil. It was pointed out that a complete quantitative assessment of soil carbon sequestration should include both the amount of organic matter input into soil and the gain in soil Corg, as well as the time during which carbon is retained in the soil. A list of the main reasons and factors limiting the process of carbon sequestration in soils was presented. The literature data on soil carbon accrual under different carbon sequestration agrobiotechnologies were summarized. It was concluded that the soils in the managed ecosystems, occupying significant areas in most countries of the world, have a significant potential for sequestration of atmospheric carbon and its transfer into soil organic matter. However, the technologies and approaches adopted for carbon sequestration does not guarantee a sustainable increase in Corg in the soil. Thus, the goal of climate- smart agriculture should be a reasonable compromise between climate and food aspects of the carbon problem by solving the triune aim of maintaining and/or improving soil fertility, increasing crop yields and mitigating anthropogenic carbon dioxide emissions.

About the Authors

V. M. Semenov
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences
Russian Federation

2 Institutskaya Str., Pushchino 142290



B. M. Kogut
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



A. L. Ivanov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”

7 Bld. 2 Pyzhevskiy per., Moscow 119017



References

1. Bashkin V.N., Agrogeochemical Technologies for Managing CO2 Flows in Agroecosystems. 1. Management Factors of the Microbial Link of the Agrogeochemical Cycle, Agrokhimiya, 2023, No. 6, pp. 90–105, DOI: https://doi.org/10.31857/S0002188123060042.

2. Bogatyrova E.N., Seraya T.M., Biryukova O.M., Kirdun T.M., Belyavskaya Yu.A., Torchilo M.M., Conversion coefficients of grain and seed in by-products and the content of main nutrients in by-products of agricultural crops in the Republic of Belarus, Soil Science and Agrochemistry, 2016, No. 2(57), pp. 78–89.

3. Zavarzin G.A., Kudeyarov V.N., Soil as the key source of carbonic acid and reservoir of organic carbon on the territory of Russia, Herald Russian Academy of Sciences, 2006, Vol. 76, No. 1, pp. 12–26.

4. Ivanov A.L., Kogut B.M., Semenov V.M., Turina Oberlander M., Waksman Schanbacher N., The Development of Theory on Humus and Soil Organic Matter: from Turin and Waksman to Present Days, Dokuchaev Soil Bulletin, 2017, Vol. 90, pp. 3–38, DOI: https://doi.org/10.19047/0136-1694-2017-90-3-38.

5. Ivanov A.L., Stolbovoy V.S., The Initiative “4 per mille” – a new global challenge for the soils of Russia, Dokuchaev Soil Bulletin, 2019, Vol. 98, pp. 185–202, DOI: https://doi.org/10.19047/0136-1694-2019-98-185-202.

6. Kogut B.M., Semenov V.M., Estimation of soil saturation with organic carbon, Dokuchaev Soil Bulletin, 2020, Vol. 102, pp. 103–124, DOI: https://doi.org/10.19047/0136-1694-2020-102-103-124.

7. Kogut B.M., Semenov V.M., Artemyeva Z.S., Danchenko N.N., Humus Depletion and Soil Carbon Sequestration, Agrokhimiya, 2021, No. 5, pp. 3–13, DOI: https://doi.org/10.31857/S0002188121050070.

8. Kogut B.M., Yashin M.A., Semenov V.M., Avdeeva T.N., Markina L.G., Lukin S.M., Tarasov S.I., Distribution of Transformed Organic Matter in Structural Units of Loamy Sandy Soddy-Podzolic Soil, Eurasian Soil Sci., 2016, Vol. 49(1), pp. 45–55, DOI: https://doi.org/10.1134/S1064229316010075.

9. Kudeyarov V.N., Soil Respiration and Carbon Sequestration: A Review, Eurasian Soil Sci., 2023, Vol. 56(9), pp. 1191–1200, DOI: https://doi.org/10.1134/S1064229323990012.

10. Kudeyarov V.N., Current state of the carbon budget and the capacity of Russian soils for carbon sequestration, Eurasian Soil Sci., 2015, Vol. 48(9), pp. 923–933, DOI: https://doi.org/10.1134/S1064229315090070.

11. Lebedeva T.N., Sokolov D.A., Semenov M.V., Zinyakova N.B., Udal’tsov S.N., Semenov V.M., Organic carbon distribution between structural and process pools in the gray forest soil of different land use, Dokuchaev Soil Bulletin, 2024, Vol. 118, pp. 79–127, DOI: https://doi.org/10.19047/0136-1694-2024-118-79-127.

12. Pautova N.B., Semenova N.A., Khromychkina D.P., Lebedeva T.N., Semenov V.M., Determination of Active Organic Matter in Fresh Farmyard Manure Using the Biokinetic Method, Agrokhimiya, 2018, No. 9, pp. 29–39, DOI: https://doi.org/10.1134/S0002188118090107.

13. Semenov V.M., Ivannikova L.A., Kuznetsova T.V., Semenova N.A., Tulina A.S., Mineralization of Organic Matter and the Carbon Sequestration Capacity of Zonal Soils, Eurasian Soil Sci., 2008, Vol. 41(7), pp. 717–730, DOI: https://doi.org/10.1134/S1064229308070065.

14. Semenov V.M., Kogut B.M., Soil organic matter, Moscow: GEOS, 2015, 233 p.

15. Semenov V.M., Lebedeva T.N., Zinyakova N.B., Sokolov D.A., Semenov M.V., Eutrophication of Arable Soil: A Comparative Effect of Mineral and Organic Fertilizers Systems, Eurasian Soil Sci., 2023a, Vol. 56(1), pp. 49–62, DOI: https://doi.org/10.1134/S1064229322601627.

16. Semenov V.M., Lebedeva T.N., Zinyakova N.B., Sokolov D.A., Sizes and Ratios of Organic Carbon Pools in Gray Forest Soil under Long-Term Application of Mineral and Organic Fertilizers, Eurasian Soil Sci., 2023b, Vol. 56(4), pp. 470–487, DOI: https://doi.org/10.1134/S1064229322602517.

17. Semenov V.M., Lebedeva T.N., Zinyakova N.B., Khromychkina D.P., Sokolov D.A., Lopes de Gerenyu V.O., Kravchenko I.K., Li H., Semenov M.V., Dependence of Soil Organic Matter and Plant Residues Decomposition on Temperature and Moisture in the Long-Term Incubation Experiments, Eurasian Soil Sci., 2022, Vol. 55(7), pp. 926–939, DOI: https://doi.org/10.1134/S1064229322070080.

18. Semenov V.M., Lebedeva T.N., Sokolov D.A., Zinyakova N.B., Lopes de Gerenu V.O., Semenov M.V., Measurement of the Soil Organic Carbon Pools Isolated Using Bio-Physical-Chemical Fractionation Methods, Eurasian Soil Sci., 2023с, Vol. 56(9), pp. 1327–1342, DOI: https://doi.org/10.1134/S1064229323601154.

19. Semenov V.M., Pautova N.B., Lebedeva T.N., Khromychkina D.P., Semenova N.A., Lopes de Gerenyu V.O., Plant Residues Decomposition and Formation of Active Organic Matter in the Soil of the Incubation Experiments, Eurasian Soil Sci., 2019, Vol. 52(10), pp. 1183–1194, DOI: https://doi.org/10.1134/S1064229319100119.

20. Sukhoveeva O.E., Input of Organic Carbon to Soil with Post-Harvest Crop Residues, Eurasian Soil Sci., 2022, Vol. 55(6), pp. 810–818, DOI: https://doi.org/10.1134/S1064229322060126.

21. Khitrov N.B., Nikitin D.A., Ivanova E.A., Semenov M.V., Variability of the Content and Stock of Soil Organic Matter in Time and Space: An Analytical Review, Eurasian Soil Sci., 2023, Vol. 56(12), pp. 1819–1844, DOI: https://doi.org/10.1134/S106422932360207X.

22. Sharkov I.N., Antipina P.V., Some aspects of carbon sequestration capacity of arable soils, Soils and Environment, 2022, Vol. 5(2), e175, DOI: https://doi.org/10.31251/pos.v5i2.175.

23. Alemu B., The Role of Forest and Soil Carbon Sequestrations on Climate Change Mitigation, Research Journal Agriculture and Environmental Management, 2014, Vol. 3(10), pp. 492–505.

24. Almaraz M., Simmonds M., Boudinot F.G., Di Vittorio A.V., Bingham N., Khalsa S.D.S., Ostoja S., Scow K., Jones A., Holzer I., Manaigo E., Geoghegan E., Goertzen H., Silver W.L., Soil carbon sequestration in global working lands as a gateway for negative emission technologies, Global Change Biol., 2023, Vol. 29, pp. 5988–5998, DOI: https://doi.org/10.1111/gcb.16884.

25. Angers D., Arrouays D., Cardinael R., Chenu C., Corbeels M., Demenois J., Farrell M., Martin M., Minasny B., Recous S., Six J., A wellestablished fact: Rapid mineralization of organic inputs is an important factor for soil carbon sequestration, Eur. J. Soil Sci., 2022, Vol. 73(3), pp. e13242, DOI: https://doi.org/10.1111/ejss.13242.

26. Angers D., Arrouays D., Cardinael R., Chenu C., Corbeels M., J. Demenois, Farrell M., Martin M., Minasny B., Recous S., Six J., A wellestablished fact: Rapid mineralization of organic inputs is an important factor for soil carbon sequestration, Eur. J. Soil Sci., 2022, Vol. 73(3), Art. No. e13242, DOI: https://doi.org/10.1111/ejss.13242.

27. Angst G., Mueller K.E., Castellano M.J., Vogel C., Wiesmeier M., Mueller C.W., Unlocking complex soil systems as carbon sinks: multi-pool management as the key, Nature Communications, 2023, Vol. 14, Art. No. 2967, DOI: https://doi.org/10.1038/s41467-023-38700-5.

28. Basile-Doelsch I., Balesdent J., Pellerin S., Reviews and syntheses: The mechanisms underlying carbon storage in soil, Biogeosciences, 2020, Vol. 17(21), pp. 5223–5242, DOI: https://doi.org/10.5194/bg-17-5223-2020.

29. Baveye P.C., Berthelin J., Tessier D., Lemaire G., Storage of soil carbon is not sequestration: Straightforward graphical visualization of their basic differences, Eur. J. Soil Science, 2023, Vol. 74(3), Art. No. e13380, DOI: https://doi.org/10.1111/ejss.13380.

30. Baveye P.C., Schnee L.S., Boivin P., Laba M., Radulovich R., Soil Organic Matter Research and Climate Change: Merely Re-storing Carbon Versus Restoring Soil Functions, Front. Environ. Sci., 2020, Vol. 8, Art. No. 579904, DOI: https://doi.org/10.3389/fenvs.2020.579904.

31. Berthelin J., Laba M., Lemaire G., Powlson D., Tessier D., Wander M., Baveye P.C., Soil carbon sequestration for climate change mitigation: Mineralization kinetics of organic inputs as an overlooked limitation, Eur. J. Soil Sci., 2022, Vol. 73, Art. No. e13221, DOI: https://doi.org/10.1111/ejss.13221.

32. Bilotto F., Christie-Whitehead K.M., Malcolm B., Harrison M.T., Carbon, cash, cattle and the climate crisis, Sustain Sci., 2023, Vol. 18, pp. 1795–1811, DOI: https://doi.org/10.1007/s11625-023-01323-2.

33. Blagodatskaya E., Blagodatsky S., Anderson T-H., Kuzyakov Y., Microbial Growth and Carbon Use Efficiency in the Rhizosphere and RootFree Soil, PLoS ONE, 2014, Vol. 9(4), Art. No. e93282, DOI: https://doi.org/10.1371/journal.pone.0093282.

34. Bolinder M.A., Crotty F., Elsen A., Frac M., Kismányoky T., Lipiec J., Tits M., Tóth Z., Kätterer T., The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews, Mitigation and Adaptation Strategies for Global Change, 2020, Vol. 25(6), pp. 929–952, DOI: https://doi.org/10.1007/s11027-020-09916-3.

35. Bossio D.A., Cook-Patton S. C., Ellis P. W., Fargione J., Sanderman J., Smith P., Wood S., Zomer R. J., von Unger M., Emmer I. M., Griscom B.W., The role of soil carbon in natural climate solutions, Nature Sustainability, 2020, Vol. 3(5), pp. 391–398, DOI: https://doi.org/10.1038/s41893-020-0491- z.

36. Brock C., Franko U., Wiesmeier M., Soil management for carbon sequestration, Encyclopedia of Soils in the Environment (Second Edition), 2023, Vol. 3, pp. 424–432, DOI: https://doi.org/10.1016/B978-0-12-822974-3.00124-5.

37. Chenu C., Angers D.A., Barré P., Derrien D., Arrouays D., Balesdent J., Increasing organic stocks in agricultural soils: Knowledge gaps and potential Innovations, Soil and Tillage Research, 2019, Vol. 188, pp. 41–52, DOI: https://doi.org/10.1016/j.still.2018.04.011.

38. Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Canadell J., Chhabra A., DeFries R., Galloway J., Heimann M., Jones C., Le Quéré C., Myneni R.B., Piao S., Thornton P., Carbon and Other Biogeochemical Cycles, In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (Stocker T.F. et al. (eds.)), Cambridge, New York: Cambridge University Press, 2013, pp. 465–570.

39. Craig M.E., Mayes M.A., Sulman B.N., Walker A.P., Biological mechanisms may contribute to soil carbon saturation patterns, Global Change Biology, 2021, Vol. 27(12), pp. 2633–2644, DOI: https://doi.org/10.1111/gcb.15584.

40. Craig M.E., Geyer K.M., Beidler K.V., Brzostek E.R., Frey S.D., Grandy A.S., Liang C., Phillips R.P., Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits, Nature Commun, 2022, Vol. 13, Art. No. 1229, DOI: https://doi.org/10.1038/s41467-022-28715-9.

41. Don A., Seidel F., Leifeld J., Kätterer T., Martin M., Pellerin S., Emde D., Seitz D., Chenu C., Carbon sequestration in soils and climate change mitigation – Definitions and pitfalls, Global Change Biol., 2024, Vol. 30, Art. No. e16983, DOI: https://doi.org/10.1111/gcb.16983.

42. FAO and ITPS. Recarbonizing global soils – A technical manual of recommended management practices. Volume 1: Introduction and methodology, Rome: FAO, 2021, 52 p., DOI: https://doi.org/10.4060/cb6386en.

43. Friedlingstein P., O’Sullivan M., Jones M.W. … Zeng J., Zheng B., Global Carbon Budget 2023, Earth Syst. Sci. Data, 2023, Vol. 15, pp. 5301–5369, DOI: https://doi.org/10.5194/essd-15-5301-2023.

44. Islam Md.R., Singh B., Dijkstra F.A., Stabilisation of soil organic matter: interactions between clay and microbes, Biogeochemistry, 2022, Vol. 160, pp. 145–158, DOI: https://doi.org/10.1007/s10533-022-00956-2.

45. Janzen H.H., Beyond carbon sequestration: soil as conduit of solar radiation, European J. Soil Sci., 2015, Vol. 66(1), pp. 19–32, DOI: https://doi.org/10.1111/ejss.12194.

46. Janzen H.H., The soil carbon dilemma: Shall we hoard it or use it? Soil Biol. Biochem., 2006, Vol. 38(3), pp. 419–424, DOI: https://doi.org/10.1016/j.soilbio.2005.10.008.

47. Janzen H.H., van Groenigen K.J., Powlson D.S., Schwinghamer T., van Groenigen J.W., Photosynthetic limits on carbon sequestration in croplands, Geoderma, 2022, Vol. 416, Art. No. 115810, DOI: https://doi.org/10.1016/j.geoderma.2022.115810.

48. Johnson J.M.-F., Allmaras R.R., Reicosky D.C., Estimating source carbon from crop residues, roots and rhizodeposits using the National Grain-Yield Database, Agronomy J., 2006, Vol. 98(3), pp. 622–636, DOI: https://doi.org/10.2134/agronj2005.0179.

49. Johnson M.P., Rötzel T.S., Frank B., Beyond conventional corporate responses to climate change towards deep decarbonization: a systematic literature review, Management Review Quarterly, 2023, Vol. 73, pp. 921–954, DOI: https://doi.org/10.1007/s11301-023-00318-8.

50. Kögel-Knabner I., Wiesmeier M., Mayer S., Mechanisms of soil organic carbon sequestration and implications for management, In: Understanding and fostering soil carbon sequestration, Ed. by C. Rumpel., Cambridge: Burleigh Dodds Sci. Publ. Lim., 2022, pp. 1–36, DOI: http://dx.doi.org/10.19103/AS.2022.0106.02.

51. Krausmann F., Erb K.H., Gingrich S., Haberl H., Bondeau A., Gaube V., Lauk C., Plutzar C., Searchinger T.D., Global human appropriation of net primary production doubled in the 20th century, Proc. Natl. Acad. Sci., 2013, Vol. 110(25), pp. 10324–10329, DOI: https://doi.org/10.1073/pnas.1211349110.

52. Lal R., Carbon sequestration, Philosophical Trans. Royal Society B, 2008, Vol. 363, pp. 815–830, DOI: http://dx.doi.org/10.1098/rstb.2007.2185.

53. Lal R., Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems, Global Change Biol., 2018, Vol. 24, pp. 3285–3301, DOI: https://doi.org/10.1111/gcb.14054.

54. Lal R., Farming systems to return land for nature: It's all about soil health and re-carbonization of the terrestrial biosphere, Farming System, 2023, Vol. 1, Art. No. 100002, DOI: https://doi.org/10.1016/j.farsys.2023.100002.

55. Lal R., Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security, BioScience, 2010, Vol. 60, pp. 708–721, DOI: https://doi.org/10.1525/bio.2010.60.9.8.

56. Lal R., Soil carbon sequestration to mitigate climate change, Geoderma, 2004a, Vol. 123, pp. 1–22, DOI: https://doi.org/10.1016/j.geoderma.2004.01.032.

57. Lal R., Soil Carbon Sequestration Impacts on Global Climate Change and Food Security, Science, 2004b, Vol. 304(5677), pp. 1623–1627, DOI: https://doi.org/10.1126/science.1097396.

58. Lal R., Lorenz K., Hüttl R.F., Schneider B.U., von Braun J., Research and Development Priorities Towards Recarbonization of the Biosphere, In: Recarbonization of the Biosphere, (Lal R., Lorenz K., Hüttl R., Schneider B., von Braun J. (eds)), Springer: Dordrecht, 2012, pp. 533–544, DOI: https://doi.org/10.1007/978-94-007-4159-1_25.

59. Lessmann M., Ros G.H., Young M.D., de Vries W., Global variation in soil carbon sequestration potential through improved cropland management, Global Change Biol., 2022, Vol. 28, pp. 1162–1177, DOI: https://doi.org/10.1111/gcb.15954.

60. Li L., Song X., Liu Y., Chai L., Emerging new global soil governance structure in agrifood systems: Taking the “4 per 1,000” initiative as an example, Front. Sustain. Food Syst., 2023, Vol. 7, Art. No. 1104252, DOI: https://doi.org/10.3389/fsufs.2023.1104252.

61. Lipper L., Thornton P., Campbell B., … Torquebiau E.F., Climate-smart agriculture for food security, Nature Climate Change, 2014, Vol. 4, pp. 1068– 1072, DOI: https://doi.org/10.1038/nclimate2437.

62. Manzoni S., Taylor P., Richter A., Porporato A., Ågren G.I., Environmental and stoichiometric controls on microbial carbon-use efficiency in soils, New Phytologist, 2012, Vol. 196, pp. 79–91, DOI: https://doi.org/10.1111/j.1469-8137.2012.04225.x.

63. Matus F.J., Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta analysis, Scientific Reports, 2021, Vol. 11, Art. No. 6438, DOI: https://doi.org/10.1038/s41598-021-84821-6.

64. Mayer S., Wiesmeier M., Sakamoto E., Hübner R., Cardinael R., Kühnel A., Kögel-Knabner I., Soil organic carbon sequestration in temperate agroforestry systems – A meta-analysis, Agriculture, Ecosystems and Environment, 2022, Vol. 323, Art. No. 107689, DOI: https://doi.org/10.1016/j.agee.2021.107689.

65. Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.S., Cheng K. … Winowiecki L., Soil carbon 4 per mille, Geoderma, 2017, Vol. 292, pp. 59–86, DOI: http://dx.doi.org/10.1016/j.geoderma.2017.01.002.

66. Moinet G.Y.K., Hijbeek R., van Vuuren D.P., Giller K.E., Carbon for soils, not soils for carbon, Global Change Biol., 2023, Vol. 29, pp. 2384–2398, DOI: https://doi.org/10.1111/gcb.16570.

67. Muñoz E., Chanca I., González-Sosa M., Sarquis A., TangarifeEscobar A., Sierra C.A., On the importance of time in carbon sequestration in soils and climate change mitigation, Global Change Biol., 2024, Vol. 30, Art. No. e17229, DOI: https://doi.org/10.1111/gcb.17229.

68. Oldfield E.E., Bradford M.A., Wood S.A., Global meta-analysis of the relationship between soil organic matter and crop yields, SOIL, 2019, Vol. 5, pp. 15–32, DOI: https://doi.org/10.5194/soil-5-15-2019.

69. Oldfield E.E., Wood S.A., Bradford M.A., Direct effects of soil organic matter on productivity mirror those observed with organic amendments, Plant and Soil, 2018, Vol. 423, pp. 363–373, DOI: https://doi.org/10.1007/s11104-017-3513-5.

70. Olson K.R., Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: Issues paper for protocol development, Geoderma, 2013, Vol. 195–196, pp. 201–206, DOI: http://dx.doi.org/10.1016/j.geoderma.2012.12.004.

71. Olson K.R., Al-Kaisi M.M., Lal R., Lowery B., Experimental Consideration, Treatments, and Methods in Determining Soil Organic Carbon Sequestration Rates, Soil Sci. Soc. Am. J., 2014, Vol. 78(2), pp. 348–360, DOI: https://doi.org/10.2136/sssaj2013.09.0412.

72. Paustian K., Lehmann J., Ogle S., Reay D., Robertson G.P., Smith P., Climate-smart soils, Nature, 2016, Vol. 532, pp. 49–57, DOI: https://doi.org/10.1038/nature17174.

73. Poeplau C., Reiter L., Berti A., Katterer T., Qualitative and quantitative response of soil organic carbon to 40 years of crop residue incorporation under contrasting nitrogen fertilisation regimes, Soil Res., 2017, Vol. 55(1), pp. 1–9, DOI: https://doi.org/10.1071/sr15377.

74. Poulton P., Johnston J., Macdonald A., White R., Powlson D., Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom, Global Change Biology, 2018, Vol. 24, pp. 2563– 2584, DOI: https://doi.org/10.1111/gcb.14066.

75. Reddy S.S., Chhabra V., Crop Residue Burning: Is It a Boon or a Bane? Comm. Soil Sci. and Plant Anal., 2022, Vol. 53(18), pp. 2353–2364, DOI: https://doi.org/10.1080/00103624.2022.2071927.

76. Rumpel C., Amiraslani F., Chenu C., Cardenas M.G., Kaonga M., Koutika L.-S., Ladha J., Madari B., Shirato Y., Smith P., Soudi B., Soussana J.-F., Whitehead D., Wollenberg E., The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy, Ambio, 2020, Vol. 49, pp. 350–360, DOI: https://doi.org/10.1007/s13280-019-01165-2.

77. Sanderman J., Hengl T., Fiske G.J., Soil carbon debt of 12,000 years of human land use, Proc. National Academy Sci., 2017, Vol. 114(36), pp. 9575– 9580, DOI: https://doi.org/10.1073/pnas.1706103114.

78. Scherr S.J., Shames S., Friedman R., From climate-smart agriculture to climate-smart landscapes, Agriculture and Food Security, 2012, Vol. 1, Art. No. 12, DOI: https://doi.org/10.1186/2048-7010-1-12.

79. Schlesinger W.H., Amundson R., Managing for soil carbon sequestration: Let’s get realistic, Global Change Biol., 2019, Vol. 25, pp. 386–389, DOI: https://doi.org/10.1111/gcb.14478.

80. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant and Soil, 2002, Vol. 241, pp. 155–176, DOI: https://doi.org/10.1023/A:1016125726789.

81. Six J., Doetterl S., Laub M., Müller C.R., Van de Broek M., The six rights of how and when to test for soil C saturation, SOIL, 2024, Vol. 10, pp. 275– 279, DOI: https://doi.org/10.5194/soil-10-275-2024.

82. Smith P., How long before a change in soil organic carbon can be detected? Global Change Biology, 2004, Vol. 10, pp. 1878–1883, DOI: https://doi.org/10.1111/j.1365-2486.2004.00854.x.

83. Smith P., Soils as carbon sinks: the global context, Soil Use and Management, 2004, Vol. 20, pp. 212–218, DOI: https://doi.org/10.1079/SUM2003233.

84. Sroufe R., Watts A., Pathways to Agricultural Decarbonization: Climate Change Obstacles and Opportunities in the US, Resources, Conservation and Recycling, 2022, Vol. 182, Art. No. 106276, DOI: https://doi.org/10.1016/j.resconrec.2022.106276.

85. Stevens A.W., Review: the economics of soil health, Food Policy, 2018, Vol. 80, pp. 1–9, DOI: https://doi.org/10.1016/j.foodpol.2018.08.005.

86. Stewart C.E., Paustian K., Conant R.T., Plante A.F., Six J., Soil carbon saturation: concept, evidence and evaluation, Biogeochemistry, 2007, Vol. 86, pp. 19–31, DOI: https://doi.org/10.1007/s10533-007-9140-0.

87. Stockmann U., Adams M.A., Crawford, J.W. Field D.J., Henakaarchchi N., Jenkins M., Minasny B., McBratney A.B., de Courcelles V.R., Singh K., Wheeler I., Abbott L., Angers D.A., Baldock J., Bird M., Brookes P.C., Chenu C., Jastrow J.D., Lal R., Lehmann J., O’Donnell A.G., Parton W.J., Whitehead D., Zimmermann M., The knowns, known unknowns and unknowns of sequestration of soil organic carbon, Agriculture, Ecosystems and Environment, 2013, Vol. 164, pp. 80–99, DOI: https://doi.org/10.1016/j.agee.2012.10.001.

88. Tao F., Huang Y., Hungate B.A., Manzoni S., Frey S.D., I. Schmidt M.W., Reichstein M., Carvalhais N., Ciais P., Jiang L., Lehmann J., Wang Y.-P., Houlton B.Z., Ahrens B., Mishra U., Hugelius G., Hocking T.D., Lu X., Shi Z., Viatkin K., Vargas R., Yigini Y., Omuto C., Malik A.A., Peralta G., Cuevas-Corona R., Di Paolo L.E., Luotto I., Liao C., Liang Y.-S., Saynes V.S., Huang X., Luo Y., Microbial carbon use efficiency promotes global soil carbon storage, Nature, 2023, Vol. 618, pp. 981–985, DOI: https://doi.org/10.1038/s41586-023-06042-3.

89. Tiefenbacher A., Sandén T., Haslmayr H.-P., Miloczki J., WenzelW., Spiegel H., Optimizing Carbon Sequestration in Croplands: A Synthesis, Agronomy, 2021, Vol. 11, Art. No. 882, DOI: https://doi.org/10.3390/agronomy11050882.

90. Van der Werf G.R., Randerson J.T., Giglio L., Van Leeuwen T.T., Chen Y., Rogers B.M., Mu M., Van Marle M.J.E., Morton D.C., Collatz G.J., Yokelson R.J., Kasibhatla P.S., Global fire emissions estimates during 1997– 2016, Earth Syst. Sci. Data, 2017, Vol. 9, pp. 697–720, DOI: https://doi.org/10.5194/essd-9-697-2017.

91. Van Groenigen J.W., Van Kessel C., Hungate B.A., Oenema O., Powlson D.S., Van Groenigen K.J., Sequestering Soil Organic Carbon: A Nitrogen Dilemma, Environ. Sci. Technol., 2017, Vol. 51(9), pp. 4738–4739, DOI: https://doi.org/10.1021/acs.est.7b01427.

92. Whalen E.D., Grandy A.S., Sokol N.W., Keiluweit M., Ernakovich J., Smith R.G., Frey S.D., Clarifying the evidence for microbial-and plantderived soil organic matter, and the path toward a more quantitative understanding, Global Change Biol., 2022, Vol. 28(24), pp. 7167–718, DOI: https://doi.org/10.1111/gcb.16413.

93. Wiesmeier M., Hübner R., Spörlein P., Geuß U., Hangen E., Reischl A., Schilling B., von Lützow M., Kögel-Knabner I., Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation, Global Change Biology, 2014, Vol. 20(2), pp. 653–665, DOI: https://doi.org/10.1111/gcb.12384.

94. Wu L., Sequestering Organic Carbon In Soils Through Land Use Change And Agricultural Practices: A Review, Frontiers Agr. Sci. Eng., 2023, Vol. 10(2), pp. 210–225, DOI: https://doi.org/10.15302/J-FASE-2022474.

95. Xiao K.Q., Zhao Y., Liang C., Zhao M., Moore O.W., Otero-Fariña A., Zhu Y.G., Johnson K., Peacock C.L., Introducing the soil mineral carbon pump, Nature Rev. Earth Environ., 2023, DOI: https://doi.org/10.1038/s43017-023-00396-y.

96. Zheng Q., Ha T., Prishchepov A.V., Zeng Y., Yin H., Koh L.P., The neglected role of abandoned cropland in supporting both food security and climate change mitigation, Nature Communications, 2023, Vol. 14, Art. No. 6083, DOI: https://doi.org/10.1038/s41467-023-41837-y.

97. Zhu X.-G., Long S.P, Ort D.R., What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology, 2008, Vol. 19, pp. 153–159, DOI: https://doi.org/10.1016/j.copbio.2008.02.00.

98. Zomer R.J., Bossio D.A., Sommer R., Verchot L.V., Global Sequestration Potential of Increased Organic Carbon in Cropland Soils, Scientific Reports, 2017, Vol. 7, Art. No. 15554, DOI: https://doi.org/10.1038/s41598-017-15794-8.


Review

For citations:


Semenov V.M., Kogut B.M., Ivanov A.L. Soil carbon sequestration in the agro-landscapes: the food imperative of the climate agenda. Dokuchaev Soil Bulletin. 2025;(124):10-69. (In Russ.) https://doi.org/10.19047/0136-1694-2025-124-10-69

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)