Preview

Dokuchaev Soil Bulletin

Advanced search

Strategy of satellite monitoring of organic carbon content in arable soil horizons in Russia

https://doi.org/10.19047/0136-1694-2025-123-65-99

Abstract

The world has accumulated quite a lot of experience in remote assessment of organic carbon content in soils. But, except for rather schematic global approaches, monitoring at the detailed level is still localized, and the constructed models cannot be extrapolated to other territories. The aim of the study was to develop a strategy for unified remote sensing monitoring of organic carbon content in arable soil horizons for the whole territory of Russia and to test it. The strategy is based on the analysis of Landsat 8-9 OLI satellite data archives. Regression models (linear or exponential) of the relationship between the reflectance of the open surface of soils in the near infrared range and the content of organic carbon in arable soil horizons are built on the basis of literature data and their parameters are selected individually for each unit of the country regionalization, which is the geometric part of the Unified State Register of Soil Resources of Russia. On the basis of models, a base map of carbon content in arable soil horizons for a period of five years was constructed. After that, a map of carbon content at the end of the current year was built on the basis of the same methodological approaches. Comparison of the maps allows estimation of changes in the current year relative to the base period. Demonstration of the use of this approach was carried out for two contrasting regionalization units in the Tver and Tula regions of Russia. The approach showed low, but comparable to analogs, accuracy for detecting small changes in carbon content (prediction error was 0.8–1.0%), but allowed to confidently identify areas with abrupt changes. It is assumed that the accuracy of modeling will increase annually with the accumulation of field data on carbon content in the arable horizon of soils, as well as with the refinement of models in each regionalization unit. Such an approach can be used to organize annual remote sensing monitoring of carbon content changes in arable soils within the framework of climate projects of the country.

About the Authors

I. Yu. Savin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”; Environmental engineering Institute of RUDN University
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017; 
5 Bld. 8 Podolskoe shosse, Moscow 115093



E. Yu. Prudnikova
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



G. V. Windecker
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



N. S. Sobolev
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”; Lomonosov Moscow State University
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017; 
1 Leninskie Gori, Moscow 119234



References

1. Grubina P.G., Savin I.Yu., Prudnikova E.Yu., The possibilities of using thermal infrared imaging data for detecting the main parameters of arable soil fertility, Dokuchaev Soil Bulletin, 2020, Vol. 105, pp. 146–172, DOI: https://doi.org/10.19047/0136-1694-2020-105-146-172.

2. Ivanov A.L., Shoba S.A. (Eds.), Edinyj gosudarstvennyj reestr pochvennyh resursov Rossii (The Unified State Register of Soil Resources of Russia), Moscow: Pochvennyj institut im. V.V. Dokuchaeva, 2014, 760 p.

3. Ivanov A.L., Savin I.Yu., Stolbovoy V.S., Dukhanin Yu.A., Kozlov D.N. Methodological approaches to the formation of a unified national system of monitoring and accounting of carbon balance and greenhouse gas emissions on lands of the agricultural fund of the Russian Federation, Dokuchaev Soil Bulletin, 2021, Vol. 108, pp. 175–218, DOI: https://doi.org/10.19047/0136-1694-2021-108-175-218.

4. Karavanova E.I., Opticheskie svojstva pochv i ih priroda (Optical properties of soils and their nature), Moscow: MSU, 2003, 153 p.

5. Orlov D.S., Sukhanova N.I., Rozanova M.S., Spektral'naja otrazhatel'naja sposobnost' pochv i ih komponentov (Spectral reflectivity of soils and their components) Moscow: Izd-vo Mosk. un-ta, 2001, 175 p.

6. Prudnikova E.Yu., Savin I.Yu., Grubina P.G., Satellite based assessment of agronomically important properties of agricultural soils with consideration of their surface state, Dokuchaev Soil Bulletin, 2023, Vol. 115, pp. 129–159, DOI: https://doi.org/10.19047/0136-1694-2023-115-129-159.

7. Samsonova V.P., Kondrashkina M.I., Krotov D.G., Prostranstvennoe mnogoobrazie agrohimicheskih svojstv pahotnyh pochv (na primere Trubchevskogo rajona Brjanskoj oblasti) (Spatial diversity of agrochemical properties of arable soils (on the example of Trubchevsky district of Bryansk region)), Vestnik Moskovskogo Universiteta. Serija 17. Pochvovedenie, 2019, No. 2, pp. 28–35.

8. Khitrov N.B., Nikitin D.A., Ivanova E.A., Semenov M.V., Prostranstvenno-vremennaja izmenchivost' soderzhanija i zapasov organicheskogo veshhestva pochvy: analiticheskij obzor (Spatial and temporal variability of the content and reserves of soil organic matter: an analytical review), Pochvovedenie, 2023, No. 12, pp. 1493–1521.

9. Angelopoulou T., Tziolas N., Balafoutis A., Zalidis G., Bochtis D., Remote sensing techniques for soil organic carbon estimation: A review, Remote Sensing, 2019, Vol. 11(6), pp. 676.

10. Ciais P., Gasser T., Paris J.D., Caldeira K., Raupach M.R., Canadell J.G., Gitz V., Attributing the increase in atmospheric CO 2 to emitters and absorbers, Nature Climate Change, 2013, Vol. 3(10), pp. 926–930.

11. Datta D., Paul M., Murshed M., Teng S.W., Schmidtke L., Soil moisture, organic carbon, and nitrogen content prediction with hyperspectral data using regression models, Sensors (Switzerland), 2022, Vol. 22(20), Article 7998, DOI: https://doi.org/10.3390/s22207998.

12. Demattê J.A., Safanelli J.L., Poppiel R.R., Rizzo R., Silvero N.E.Q., Mendes W.D.S., Lisboa C.J.D.S., Bare earth’s surface spectra as a proxy for soil resource monitoring, Scientific reports, 2020, Vol. 10(1), pp. 1–11.

13. Dou X., Wang X., Liu H., Zhang X., Meng L., Pan Y., Cui Y., Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China, Geoderma, 2019, Vol. 356, 113896.

14. Đurđević B., Jug I., Jug D., Bogunović I., Vukadinović V., Stipešević B. et al., Spatial variability of soil organic matter content in Eastern Croatia assessed using different interpolation methods, Int. Agrophys., 2019, Vol. 33(1), pp. 31–39, DOI: https://doi.org/10.31545/intagr/104372.

15. FAO. Global Soil Organic Carbon Map – GSOCmap v.1.6. Technical report, Rome, 2022, DOI: https://doi.org/10.4060/cb9015en.

16. Guo L., Fu P., Shi T., Chen Y., Zeng C., Zhang H., Wang S., Exploring influence factors in mapping soil organic carbon on low-relief agricultural lands using time series of remote sensing data, Soil and Tillage Research, 2021, Vol. 210, 104982.

17. Jackson R.B., Lajtha K., Crow S.E., Hugelius G., Kramer M.G., Piñeiro G., The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls, Annual Review of Ecology, Evolution, and Systematics, 2017, Vol. 48(1), pp. 419–445.

18. Jin Y., Sharifi A., Li Z., Chen S., Zeng S., Zhao S., Carbon emission prediction models: A review, Science of The Total Environment, 2024, Vol. 927, 172319, DOI: https://doi.org/10.1016/j.scitotenv.2024.172319.

19. Kalambukattu J.G., Kumar S., Arya Raj R., Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model, Environmental earth sciences, 2018, Vol. 77(5), pp. 1–14.

20. Lamichhane S., Kumar L., Wilson B., Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review, Geoderma, 2019, Vol. 352, pp. 395–413.

21. Le Noë J., Manzoni S., Abramoff R. et al., Soil organic carbon models need independent time-series validation for reliable prediction, Commun Earth Environ., 2023, Vol. 4(158), DOI: https://doi.org/10.1038/s43247-023-00830-5.

22. Mahmoudabadi E., Karimi A., Haghnia G.H., Sepehr A., Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran, Environmental monitoring and assessment, 2017, Vol. 189(10), pp. 1–20.

23. Nguyen C.T., Chidthaisong A., Kieu Diem P., Huo L-Z., A Modified bare soil index to identify bare land features during agricultural fallow-period in Southeast Asia Using Landsat 8, Land, 2021, Vol. 10(3), pp. 231, DOI: https://doi.org/10.3390/land10030231.

24. Panahi H., Azizi Z., Kiadaliri H., Almodaresi S.A., Aghamohamadi H., Bare soil detecting algorithms in western Iran woodlands using remote sensing, Smart Agricultural Technology, 2024, Vol. 7, 100429, DOI: https://doi.org/10.1016/j.atech.2024.100429.

25. Rosero-Vlasova O.A., Vlassova L., Pérez-Cabello F., Montorio R., Nadal-Romero E., Soil organic matter and texture estimation from visible– near infrared–shortwave infrared spectra in areas of land cover changes using correlated component regression, Land Degradation & Development, 2019, Vol. 30(5), pp. 544–560.

26. Schillaci C., Lombardo L., Saia S., Fantappiè M., Märker M., Acutis M., Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region, Geoderma, 2017, Vol. 286, pp. 35–45.

27. Schuster J., Mittermayer M., Maidl F.X. et al., Spatial variability of soil properties, nitrogen balance and nitrate leaching using digital methods on heterogeneous arable fields in southern Germany, Precision Agric., 2023, Vol. 24, pp. 647–676, DOI: https://doi.org/10.1007/s11119-022-09967-3.

28. Shen Z., Ramirez-Lopez L., Behrens T., Cui L., Zhang M., Walden L., ... Rossel R.A.V., Deep transfer learning of global spectra for local soil carbon monitoring, ISPRS Journal of Photogrammetry and Remote Sensing, 2022, Vol. 188, pp. 190–200.

29. Yang R.M., Zhang G.L., Liu F., Lu Y.Y., Yang F., Yang F., ... Li D.C., Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem, Ecological Indicators, 2016, Vol. 60, pp. 870–878.


Review

For citations:


Savin I.Yu., Prudnikova E.Yu., Windecker G.V., Sobolev N.S. Strategy of satellite monitoring of organic carbon content in arable soil horizons in Russia. Dokuchaev Soil Bulletin. 2025;(123):65-99. (In Russ.) https://doi.org/10.19047/0136-1694-2025-123-65-99

Views: 46


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)