Water-Extractable Organic Matter And Biological Activity Of Agrodernovo-Podzolic Soils Under Main Crops In The Non-Chernozem Region With Different Mineral Nutrition Background
https://doi.org/10.19047/0136-1694-2025-124-224-253
Abstract
Presently the problem of restoring the potential of cultivated lands in the Non-Chernozem Region of Russia is quite relevant. Thus, it is pointful to study the main factors influencing the fertility and stability of the soils in this zone. One of the leading factors altering the fertility, equilibrium, and stability of soils is organic matter. Its most active and labile in time and space component is dissolved organic matter. Dissolved organic matter actively interacts with living matter in soils and is interconnected with manifestations of biological activity. The aim of the work was to evaluate the optical properties of water-extractable organic matter (WEOM) and to reveal the relationship with the biological activity of sod-podzolic soils under different crops with different backgrounds of mineral nutrition elements. Absorption and fluorescence spectra were used to characterize the optical properties. Biological activity was evaluated by basal and substrate-induced respiration. As a result, it was shown that WEOM optical properties largely depend on the structure of the microbial community. At the same time, WEOM carbon content depended on the level of microbial activity, which, in turn, was largely determined by the presence of mineral nutrition elements. Fertilizer application stimulated microorganisms to process organic matter. At the same time, WEOM became more diverse and more humified.
Keywords
About the Authors
V. A. KholodovRussian Federation
VladimirA. Kholodov
7 Bld. 2 Pyzhevskiy per., Moscow 119017
Aliia Ziganshina
Russian Federation
Aliia R. Ziganshina
7 Bld. 2 Pyzhevskiy per., Moscow 119017
N N. Danchenko
Russian Federation
Natalia N. Danchenko
7 Bld. 2 Pyzhevskiy per., Moscow 119017
D. N. Nikitin
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
E. A. Danilova-Danilyan
Russian Federation
Elizaveta A. Danilova-Danilyan
7 Bld. 2 Pyzhevskiy per., Moscow 119017
M. V. Semenov
Russian Federation
Mikhail V. Semenov
7 Bld. 2 Pyzhevskiy per., Moscow 119017
O. V. Kutovaya
Russian Federation
Olga V. Kutovaya
7 Bld. 2 Pyzhevskiy per., Moscow 119017
S. A. Krisanov
Russian Federation
Semen A. Krisanov
17 Naberezhnaya Severnaya Dvina, Arkhangelsk 163002
I. I. Grigoreva
Russian Federation
Irina I. Grigoreva
7 Bld. 2 Pyzhevskiy per., Moscow 119017
I. V. Danilin
Russian Federation
Igor V. Danilin
7 Bld. 2 Pyzhevskiy per., Moscow 119017
E. A. Ivanova
Russian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
References
1. Karavanova E.I., Vodorastvorimye organicheskie veshchestva: fraktsionnyi sostav i vozmozhnosti ikh sorbtsii tverdoi fazoi lesnykh pochv (Dissolved organic matter: Fractional composition and sorbability by the soil solid phase), Pochvovedenie, 2013, No. 8, pp. 924–936.
2. Kiryushin V.I., The goals of land use optimization in Russia, Dokuchaev Soil Bulletin, 2023, Vol. 116, pp. 5–25, DOI: https://doi.org/10.19047/0136-1694-2023-116-5-25.
3. Kulikova N.A., Vliyaniye vodorastvorimykh komponentov pochv na razmer i elektrokineticheskiy potentsial nanoalmazov (Influence of watersoluble soil components on the size and electrokinetic potential of nanodiamonds), Pochvovedenie, 2020, No. 7, pp. 816–827.
4. Kulikova N.A., Kholodov V.A., Farkhodov Yu.R., Ziganshina A.R., Zavarzina A.G., Karpukhin M.M., Rastvorennoe organicheskoe veshchestvo chernozemov razlichnogo vida ispol'zovaniya: vzaimosvyaz' strukturnykh osobennostei i mineral'nogo sostava (Dissolved Organic Matter of Chernozems of Different Use: Relationship of Structural Features and Mineral Composition), Vestnik Moskovskogo universiteta, Ser. 17, Pochvovedenie, 2024, Vol. 74, No. 1, pp. 24–32.
5. Mitin S.G., Sysoev G.V., Starostin I.A., Eshchin A.V., Technical and technological support for the involvement of fallow lands in agriculture, Dokuchaev Soil Bulletin, 2024, Vol. 118, pp. 276–308, DOI: https://doi.org/10.19047/0136-1694-2024-118-276-308.
6. National report on the progress and results of the implementation in 2022 of the State Program for the Development of Agriculture and Regulation of Agricultural Products, Raw Materials and Food Markets, Moscow: Ministerstvo sel'skogo khozyaistva Rossiiskoi Federatsii, 2023, 159 p.
7. Petrova L.I., Mitrofanov Yu.I., Pervushina N.K., Gulyaev M.V., Iinfluence of various factors on crop formation and potato quality, Agrarian Bulletin of the Urals, 2021, No. 4 (207), pp. 34–42, DOI: https://doi.org/10.32417/1997-4868-2021-207-04-34-42.
8. Petrova L.I., Mitrofanov Yu.I., Pervushina N.K. et al., Influence of fertilizers and weather conditions on the formation of spring wheat yield on drained lands, Zemledelije, 2020, No. 4, pp. 12–15, DOI: https://doi.org/10.24411/0044-3913-2020-10403.
9. Prikhod’ko V., Sizemskaya M.L., Basal respiration and composition of microbial biomass in virgin and agroforest-reclaimed semidesert soils of the Northern Caspian region, Eurasian Soil Science, 2015, No. 48, pp. 852–861, DOI: https://doi.org/10.1134/S1064229315080049.
10. Tkhakakhova A.K., Chernov T.I., Ivanova E.A., Kutovaya O.V., Kogut B.M., Zavalin A.A., Izmenenie metagenoma prokariotnogo soobshchestva chernozemov pod vozdeistviem mineral'nykh udobrenii (Changes in metagenome prokaryotic community chernozems under the influence of mineral fertilizers), Doklady Rossiiskoi akademii sel'skokhozyaistvennykh nauk, 2015, No. 6, pp. 20–23.
11. Kholodov V.A., Ivanov V.A., Farkhodov J.R., Safronova N.A., Artemyeva Z.S., Jaroslavceva N.V., The Optical Characteristics of Aggregates Organic Dokuchaev Soil Bulletin, 2025, 124, SOM 250 Matter Fractions in Typical Chernozems, Dokuchaev Soil Bulletin, 2017, Vol. 90, pp. 56–72, DOI: https://doi.org/10.19047/0136-1694-2017-90-56-72.
12. Kholodov V.A., Rogova O.B., Lebedeva M.P., Varlamov E.B., Volkov D.S., Ziganshina A.R., Yaroslavtseva N.V., Organic matter and mineral matrix of soils: modern approaches, definitions of terms and methods of study (review), Dokuchaev Soil Bulletin, 2023, Vol. 117, pp. 52–100, DOI: https://doi.org/10.19047/0136-1694-2023-117-52-100.
13. Kholodov V.A., Farkhodov Yu.R., Yaroslavtseva N.V., Danchenko N.N., Ilyin B.S., Lazarev V.I., Dissolved organic matter and microbial carbon of Protocalcic Chernozems of different land management, Dokuchaev Soil Bulletin, 2022, Vol. 112, pp. 122–133, DOI: https://doi.org/10.19047/0136-1694-2022-112-122-133.
14. Kholodov V.A., Yaroslavtseva N.V., Farkhodov Yu.R., Yashin M.A., Lazarev V.I., Il'in B.S., Filippova O.I., Volikov A.B., Ivanov A.L., Opticheskie kharakteristiki ekstragiruemykh fraktsii organicheskogo veshchestva tipichnykh chernozemov v mnogoletnikh polevykh opytakh (Optical Properties of Extractable Fractions of Organic Matter of the Chernozems Measured in Long-Term Field Experiments), Pochvovedenie, 2020, No. 6, pp. 691–702, DOI: https://doi.org/10.31857/S0032180X20060052.
15. Chebotina M.Ya., Vliyaniye vodorastvorimogo veshchestva lesnoy podstilki na pogloshcheniye radioaktivnykh izotopov v pochve (Effect of water-soluble matter of forest litter on the absorption of radioactive isotopes in soil), Radioekologicheskiye issledovaniya pochv i rasteniy. Ser. “Trudy Instituta ekologii rasteniy i zhivotnykh” (Radioecological studies of soils and plants. Series: “Proceedings of the Institute of Plant and Animal Ecology”), 1975, pp. 21–25.
16. Begum M.S., Lee M.H., Park T.J., Lee S.Y., Shin K.H., Shin H.S., Chen M., Hur J., Source tracking of dissolved organic nitrogen at the molecular level during storm events in an agricultural watershed, Science of the Total Environment, 2022, Vol. 810.
17. Bengtsson M.M., Attermeyer K., Catalán N., Interactive effects on organic matter processing from soils to the ocean: are priming effects relevant in aquatic ecosystems? Hydrobiologia, 2018, Vol. 822 (1), pp. 1–17.
18. Chang D.N., Cao W.D., Bai J.S., Gao S.J., Wang X.C., Zeng N.H., Katsuyoshi S., Spectrosc. Effects of green manures on soil dissolved organic matter in moisture soil in North China, Spectral. Anal., 2017, Vol. 37 (1), pp. 221–226.
19. Chantigny M.H., Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices, Geoderma, 2003, Vol. 113 (3–4), pp. 357–380.
20. Chen M., Jung J., Lee Y.K., Hur J., Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean, Science of the Total Environment, 2018, Vol. 639, pp. 624–632.
21. Chen X., Liu M., Kuzyakov Y., Li W., Liu J., Jiang C., Meng Wu, Li Z., Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence, Applied Soil Ecology, 2018, Vol. 130, pp. 84–90, DOI: https://doi.org/10.1016/j.apsoil.2018.06.004.
22. Coble P.G., Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Marine Chemistry, 1996, Vol. 51 (4), pp. 325–346.
23. Gaelen van N., Verschoren V., Clymans W., Poesen J., Govers G., Vanderborght J., Diels J., Controls on dissolved organic carbon export through surface runoff from loamy agricultural soils, Geoderma, 2014, Vol. 226–227, pp. 387–396.
24. Gamrani M., Eert J., Gueguen C., Wiliams W.J., A river of terrestrial dissolved organic matter in the upper waters of the central Arctic Ocean, Deep Sea Res 1 Oceanogr Res Pap., 2023, Vol. 196.
25. Gao Z., Guéguen C., Distribution of thiol, humic substances and colored dissolved organic matter during the 2015 Canadian Arctic GEOTRACES cruises, Mar Chem., 2018, Vol. 203, pp. 1–9.
26. Gao Z., Guéguen C., Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin, Deep Sea Res 1 Oceanogr Res Pap., 2017, Vol. 121, pp. 30–37.
27. Gmach M.R., Cherubin M.R., Kaiser K., Cerri C.E.P., Processes that influence dissolved organic matter in the soil: A review, Sci. Agric., 2020, Vol. 77 (3), pp. 1–10.
28. Grandy A.S., Neff J.C., Weintraub M.N., Carbon structure and enzyme activities in alpine and forest ecosystems, Soil Biology and Biochemistry, 2007, Vol. 39 (11), pp. 2701–2711.
29. Gullian-Klanian M., Gold-Bouchot G., Delgadillo-Diaz M., Aranda J., Sanchez-Solis M.J., Effect of the use of Bacillus spp. on the characteristics of dissolved fluorescent organic matter and the phytochemical quality of Stevia rebaudiana grown in a recirculating aquaponic system, Environmental Science and Pollution Research, 2021, Vol. 28, No. 27, pp. 36326–36343.
30. Hatton P.J., Kleber M., Zeller B., Moni C., Plante A.F., Townsend K., Gelhaye L., Lajtha K., Derrien D., Transfer of litter-derived N to soil mineralorganic associations: Evidence from decadal 15N tracer experiments, Organic Geochemistry, 2012, Vol. 42. (12), pp. 1489–1501.
31. Helms J.R., Stubbins A., Ritchie J.D., Minor E.C., Kieber D.J., Mopper K., Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnology and Oceanography, 2008, Vol. 53 (3), pp. 955–969.
32. Imbeau E., Vincent W.F., Wauthy M., Cusson M., Hidden Stores of Organic Matter in Northern Lake Ice: Selective Retention of Terrestrial Particles, Phytoplankton and Labile Carbon, J. Geophys. Res. Biogeosci., 2021, Vol. 126, No. 8.
33. ISO 8245:1999. Water quality – Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).
34. Kalbitz K., Solinger S., Park J.H., Michalzik B., Matzner E., Controls on the dynamics of dissolved organic matter in soils: a review, Soil Science, 2000, Vol. 165, pp. 277–304.
35. Kholodov V.A., Yaroslavtseva N.V., Ziganshina A.R., Danchenko N.N., Farkhodov Y.R., Maksimovich S.V., Zhidkin A.P., Water-Extractable Organic Matter of Soils with Different Degrees of Erosion-Induced Degradation and Sedimentation in a Small Catchment in the Central Forest-Steppe Part of the Central Russian Upland: Tilled Soils, Eurasian Soil Science, 2024, Vol. 57 (6), pp. 889–902.
36. Kida M., Kojima T., Tanabe Y., Hayashi K., Kudoh S., Maie N., Fujitake N., Origin, distributions, and environmental significance of ubiquitous humiclike fluorophores in Antarctic lakes and streams, Water Research, 2019, Vol. 163, pp. 114901.
37. Mann P.J., Spencer R.G.M., Hernes P.J., Six J., Aiken G.R., Tank S.E., McClelland J.W., Butler K.D., Dyda R.Y., Holmes R.M., Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical Measurements, Frontiers in Earth Science, 2016, Vol. 4.
38. Murphy K.R., Stedmon C.A., Graeber D., Bro R., Fluorescence spectroscopy and multi-way techniques. PARAFAC, Anal. Methods, 2013, Vol. 5 (23), pp. 6557–6566.
39. Pucher M., Wünsch U., Weigelhofer G., Murphy K., Hein T., Graeber D., StaRdom: Versatile software for analyzing spectroscopic data of dissolved organic matter in R, Water (Switzerland), 2019, Vol. 11, DOI: https://doi.org/10.3390/w11112366.
40. Rodrigues S.M., Trindade T., Duarte A.C., Pereira E., Koopmans G.F., Römkens P.F.A.M., A framework to measure the availability of engineered nanoparticles in soils: Trends in soil tests and analytical tools, Trends Anal. Chem., 2016, Vol. 75, pp. 129–140.
41. Romero C.M., Engel R.E., D`Andrill J., Chen C., Zabinski C., Miller P., Wallander R., Bulk optical characterization of dissolved organic matter from semiarid wheat-based cropping systems, Geoderma, 2017, Vol. 306, pp. 40– 49.
42. Roper M.M., Gupta V., Murphy D., Tillage practices altered labile soil organic carbon and microbial function without affecting crop yields, Australian Journal of Soil Research, 2010, Vol. 48, pp. 274–285.
43. Schittich A.R., Wunsch U., Kulkarni H.V., Battistel M., Bregnhoj H., Stedmon C.A., Mcknight U.S., Investigating Fluorescent Organic-Matter Composition as a Key Predictor for Arsenic Mobility in Groundwater Aquifers, Environ Sci Technol. American Chemical Society., 2018, Vol. 52, No. 22, pp. 13027–13036.
44. Sharma P., Laor Y., Raviv M., Medina S., Saadi I., Krasnovsky A., Vager M., Levy G.J., Bar-Tal A., Borisover M., Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil, Geoderma, 2017, Vol. 286, pp. 73–82.
45. Stockdale A., Bryan N.D., The influence of natural organic matter on radionuclide mobility under conditions relevant to cementitious disposal of radioactive wastes: A review of direct evidence, Earth-Science Rev., 2013, Vol. 121, pp. 1–17.
46. Swenson T.L., Jenkins S., Bowen B.P., Northen T.R., Untargeted soil metabolomics methods for analysis of extractable organic matter, Soil Biol. Biochem., 2015, Vol. 80, pp. 189–198.
47. Toosi E.R., Schmidt J.P., Castellano M.J., Land use and hydrologic flowpaths interact to affect dissolved organic matter and nitrate dynamics, Biogeochemistry, 2014, Vol. 120 (1–3), pp. 89–104.
48. Wünsch U.J., Murphy K.R., Stedmon C.A., The One-Sample PARAFAC Approach Reveals Molecular Size Distributions of Fluorescent Components in Dissolved Organic Matter, Environ Sci Technol. American Chemical Society, 2017, Vol. 51, No. 20, pp. 11900–11908.
49. Yamashita Y., Boyer J.N., Jaffé R., Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy, Cont Shelf Res., 2013, Vol. 66, pp. 136–144.
50. Zhuang W.E., Chen W., Cheng Q., Yang L., Assessing the priming effect of dissolved organic matter from typical sources using fluorescence EEMsPARAFAC, Chemosphere, 2021, Vol. 264.
Review
For citations:
Kholodov V.A., Ziganshina A., Danchenko N.N., Nikitin D.N., Danilova-Danilyan E.A., Semenov M.V., Kutovaya O.V., Krisanov S.A., Grigoreva I.I., Danilin I.V., Ivanova E.A. Water-Extractable Organic Matter And Biological Activity Of Agrodernovo-Podzolic Soils Under Main Crops In The Non-Chernozem Region With Different Mineral Nutrition Background. Dokuchaev Soil Bulletin. 2025;(124):224-253. (In Russ.) https://doi.org/10.19047/0136-1694-2025-124-224-253