Preview

Dokuchaev Soil Bulletin

Advanced search

The influence of heavy metals on the enzyme activity within the soils of the nature recreation zone in Perm (Model Experiment)

https://doi.org/10.19047/0136-1694-2025-126-204-229

Abstract

The aim of this study was to assess the change in enzyme activity (catalase, urease, and invertase) in soddy-eluvozem and dark humus soil under simulated contamination with Cd, Cu, Zn, and Pb. Enzyme activity serves as one of the indicators of metal toxicity in soils. Appropriate levels of pollution were established in preserved media using solutions of acetic acid salts of Cd, Cu, Zn, and Pb with concentrations of 0 (control), 2.5, 5, 10, 25, 50, 100, 250, 500, 1000, and 1500 mg/kg. Based on genetic properties, dark humus soils exhibit greater resistance to pollutants compared to soddy-eluvozem. The average organic matter content in dark humus soil reaches 7.0%, with nearly neutral pH, while the granulometric composition varies from heavy loamy to medium clayey, and sod-eluvozem is characterized by light loamy texture, acidity, and a lower humus content. The assessment of the critical pollution threshold, indicated by the activity levels of catalase, urease, and invertase, demonstrates the enhanced stability of dark humus soil. Among the indicators studied, the urease activity emerged as the most sensitive indicator of heavy metal pollution in both types of soil; it decreased in sod-eluvozem with the introduction of Cd and Cu starting at 100 mg/kg and higher, while in dark humus soil, the decline occurred with the introduction of Cd starting at 100 mg/kg and higher and Cu starting at 1000 mg/kg and higher. The negative impact of Pb was observed only in dark humus soil, where urease activity decreased under pollution levels of 250 mg/kg and greater. The enzyme activity remained consistent when the soil was contaminated with Zn, with a decrease in the indicator observed only at elevated doses (1500 mg/kg). A notable feature of catalase and invertase activity in both soils was their increase under higher levels of contamination, which is presumably due to a decrease in microbial activity. When analyzing the comparative toxicity of metals, it was found that Cu, despite its biogenic significance, exhibited a greater ecotoxicological effect when compared to Zn and Cd; the introduction of Pb had the minimal effect on enzyme activity.

About the Authors

P. Sh. Sairanova
Perm State National Research University
Russian Federation

15 Bukireva Str., Perm 614990



O. Z. Eremchenko
Perm State National Research University
Russian Federation

15 Bukireva Str., Perm 614990



References

1. Alad'eva T.L., Zimatkin S.M., Katalaza kletki: stroenie, biogenez, mnogoobrazie, funktsii (Cell catalase: structure, biogenesis, diversity, functions), Eksperimental'naya biologiya i biotekhnologiya, 2022, No. 1, pp. 12–22.

2. Vodyanitskii Yu.N., Tyazhelye i sverkhtyazhelye metally i metalloidy v zagryaznennykh pochvakh (Heavy and superheavy metals and metalloids in contaminated soils), Moscow: GNU Pochvennyi institut im. V.V. Dokuchaeva Rossel'khozakademii, 2009, 96 p.

3. Vodyanitskii Yu.N., Ladonin D.V., Savichev A.T., Zagryaznenie pochv tyazhelymi metallami (Soil pollution with heavy metals), Moscow, 2012, 304 p.

4. Dadenko E.V., Myasnikova M.A., Chernokalova E.V., Kazeev K.Sh., Kolesnikov S.I., Sezonnaya dinamika fermentativnoi aktivnosti chernozema obyknovennogo (Seasonal dynamics of enzymatic activity of ordinary chernozem), Sovremennye problemy nauki i obrazovaniya, 2013, No. 6, p. 743.

5. Eremchenko O.Z., Shestakov I.E., Moskvina N.V., Pochvy i tekhnogennye poverkhnostnye obrazovaniya urbanizirovannykh territorii Permskogo Prikam'ya (Soils and technogenic surface formations of urbanized territories of the Perm Kama region), Perm: Izd-vo Perm. gos. nats. issled. un-t, 2016, 252 p.

6. Zvyagintsev D.G., Biologicheskaya aktivnost' pochv i shkaly dlya otsenki nekotorykh ee pokazatelei (Biological activity of soils and scales for assessing some of its indicators), Pochvovedenie, 1978, No. 6, pp. 48–54.

7. Il'in V.B., Tyazhelye metally v sisteme pochva – rastenie (Heavy metals in the soil – plant system), Novosibirsk: Izd-vo SO RAN, 2012, 220 p.

8. Koptsik G.N., Ustoichivost' lesnykh pochv k atmosfernomu zagryazneniyu (Resistance of forest soils to atmospheric pollution), Lesovedenie, 2004, No. 4, pp. 61–71.

9. Koptsik S.V., Koptsik G.N., Otsenka sovremennykh riskov izbytochnogo nakopleniya tyazhelykh metallov v pochvakh na osnove kontseptsii kriticheskikh nagruzok (obzor) (Assessment of modern risks of excessive accumulation of heavy metals in soils based on the concept of critical loads (review)), Pochvovedenie, 2022, No. 5, pp. 615–630, DOI: https://doi.org/10.31857/S0032180X22050033.

10. Mineev V.G., Lebedeva L.A., Arzamazova A.V., Posledeistvie razlichnykh sistem udobreniya na fermentativnuyu aktivnost' dernovo-podzolistoi pochvy pri zagryaznenii tyazhelymi metallami (Aftereffect of various fertilizer systems on the enzymatic activity of soddy-podzolic soil when polluted with heavy metals), Agrokhimiya, 2008, No. 10, pp. 48–54.

11. Novoselova E.I., Fermentativnaya aktivnost' pochv v usloviyakh neftyanogo zagryazneniya i ee biodiagnosticheskoe znachenie (Enzymatic activity of soils under conditions of oil pollution and its biodiagnostic significance), Teoreticheskaya i prikladnaya ekologiya, 2009, No. 2, pp. 4–12.

12. Procedure and measures for the protection of rare and endangered soils listed in the Red Book of Soils of the Perm Territory, the list of rare and endangered soils listed in the Red Book of Soils of the Perm Territory: Resolution of the Government of the Perm Territory No. 447-p, 27.05.2022.

13. Resolution of the Chief State Sanitary Doctor of the Russian Federation, 28.01.2021, No. SanPiN 1.2.3685-21.

14. Polyak Yu.M., Sukharevich V.I., Pochvennye fermenty i zagryaznenie pochv: biodegradatsiya, bioremediatsiya, bioindikatsiya (Soil enzymes and soil pollution: biodegradation, bioremediation, bioindication), Agrokhimiya, 2020, No. 3, pp. 83–93, DOI: https://doi.org/10.31857/S0002188120010123.

15. Sairanova P.Sh., Eremchenko O.Z., Properties of psammozems of the Kama terraces above the floodplain and assessment of their sustainability to pollution by Cu and Cd, Dokuchaev Soil Bulletin, 2024, Vol. 119, pp. 66–97, DOI: https://doi.org/10.19047/0136-1694-2024-119-66-97.

16. Trifonova T.A., Zabelina O.N., Izmenenie biologicheskoi aktivnosti pochvy gorodskikh rekreatsionnykh territorii v usloviyakh zagryazneniya tyazhelymi metallami i nefteproduktami (Changes in the biological activity of soil in urban recreational areas under conditions of pollution with heavy metals and petroleum products), Pochvovedenie, 2017, No. 4, pp. 497–505.

17. Ushakova E.S., Puzik A.Yu., Karavaeva T.I., Otsenka mikroelementnogo sostava snezhnogo pokrova Bereznikovskogo gorodskogo okruga (Permskii krai) (Assessment of the microelement composition of the snow cover of the Berezniki urban district (Perm Krai)), Geograficheskii vestnik, 2020, No. 2 (53), pp. 130–140, DOI: https://doi.org/10.17072/2079-7877-2020-2-130-140.

18. Khaziev F.Kh., Metody pochvennoi enzimologii (Methods of soil enzymology), Moscow: Nauka, 2005, 252 p.

19. Khaziev F.Kh., Ekologicheskie svyazi fermentativnoi aktivnosti pochv (Ecological connections of soil enzymatic activity), Ekobiotekh, 2018, Vol. 1, No. 2, pp. 80–92.

20. Chupakhina G.N., Maslennikov P.V., Skrypnik L.N., Besserezhnova M.I., Reaktsiya pigmentnoi i antioksidantnoi sistem rastenii na zagryaznenie okruzhayushchei sredy g. Kaliningrada vybrosami avtotransporta (Response of the pigment and antioxidant systems of plants to environmental pollution in Kaliningrad by vehicle emissions), Vestnik Tomskogo gosudarstvennogo universiteta, Biologiya, 2012, No. 2 (18), pp. 171–185.

21. Shvakova E.V., Izmenenie aktivnosti ureazy pri povyshennykh soderzhaniyakh tyazhelykh metallov (Pb, Zn, Cu) v pochve (Changes in urease activity at elevated levels of heavy metals (Pb, Zn, Cu) in the soil), Arctic Environmental Research, 2013, No. 2, pp. 61–66.

22. Shcherbakova T.A., Fermentativnaya aktivnost' pochv i transformatsiya organicheskogo veshchestva (Enzymatic activity of soils and transformation of organic matter), Minsk, 1983, 222 p.

23. Bacmaga M., Boros E., Kucharski J., Wyzkowska J., Enzymatic activity in soil contaminated with the Aurora 40 Wg herbicide, Environment Protection Engineering, 2012, Vol. 38 (1), pp. 91–102, DOI: https://doi.org/10.1080/10934529.2012.630305.

24. Bastida F., Moreno J., Hernandez T., García C., Microbiological activity in a soil 15 years after its devegetation, Soil Biology and Biochemistry, 2006, Vol. 38 (8), pp. 2503–2507, DOI: https://doi.org/10.1016/j.soilbio.2006.02.022.

25. Blagodatskaya E., Kuzyakov Y., Active microorganisms in soil: Critical review of estimation criteria and approaches, Soil Biology and Biochemistry, 2013, Vol. 67, pp. 192–211, DOI: https://doi.org/10.1016/j.soilbio.2013.08.024.

26. Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintraub M.N., Zoppini A., Soil enzymes in a changing environment: Current knowledge and future directions, Soil Biology and Biochemistry, 2013, Vol. 58, pp. 216–234, DOI: https://doi.org/10.1016/j.soilbio.2012.11.009.

27. Calamai L., Lozzi I., Stotzky G., Fusi P., Ristori G.G., Interaction of catalase with montmorillonite homoionic to cations with different hydrophobicity: effect on enzymatic activity and microbial utilization, Soil Biology and Biochemistry, 2000, Vol. 32 (6), pp. 815–823, DOI: https://doi.org/10.1016/S0038-0717(99)00211-4.

28. Chaperon S., Sauve S., Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation, Ecotoxicology and Environmental Safety, 2008, Vol. 70, pp. 1–9, DOI: https://doi.org/10.1016/j.ecoenv.2007.10.026.

29. Ciarkowska K., Solek-Podwika K., Wieczorek J., Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area, Journal of Environmental Management, 2014, Vol. 132, pp. 250–256, DOI: https://doi.org/10.1016/j.jenvman.2013.10.022.

30. Frankeberger W.T., Johanson J.B., Method of measuring invertase activity in soils, Plant and soil, 1983, Vol. 74, pp. 301–311.

31. Gianfreda L., Rao M.A., The influence of pesticides on soil enzymes, Soil Enzymology, Soil Biology Series, 2010, No. 22, pp. 293–312, DOI: https://doi.org/10.1007/978-3-642-14225-3_16.

32. Gianfreda L., Ruggiero P., Enzyme activities in soil P. Nannipieri, K. Smalla, Nucleic Acids and Proteins in Soil, 2006, pp. 257–297, DOI: https://doi.org/10.1007/3-540-29449-X_12.

33. Hale B., Gopalapillai Y., Pellegrino A., Jennett T., Kikkert J., Lau W., Schlekat C., McLaughlin M.J., Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni, Environ. Pollut, 2017, Vol. 231, pp. 165–172, DOI: https://doi.org/10.1016/j.envpol.2017.08.008.

34. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, Ed. Alloway B.J. N.Y., Springer Science + Business Media Dordrecht, 2013, 613 p., DOI: https://doi.org/10.1007/978-94-007-4470-7_8.

35. Jian S., Li J., Chen J., Wang G., Mayes M.A., Dzantor K.E., Hui D., Luo Y., Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis, Soil Biol. Biochem., 2016, Vol. 101, pp. 32–43, DOI: https://doi.org/10.1016/j.soilbio.2016.07.003.

36. Kiruba N.J.M., Thatheyus A.J., Chapter 18 – Fungi, fungal enzymes and their potential application as biostimulants, In: Editor(s): White J., Kumar A., Droby S., Microbiome Stimulants for Crops, Woodhead Publishing, 2021, pp. 305–314, DOI: https://doi.org/10.1016/B978-0-12-822122-8.00024-8.

37. Kocak B., Importance of urease activity in soil, V International Scientific and Vocational Studies Congress – Science and Health, 2020, pp. 51–60.

38. Liu J., Niu J., Yin L., Jiang F., In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring, Analyst, 2011, Vol. 136, pp. 4802–4808.

39. Ma B., Wang J., Zhang L., Two cadmium-resistant strains of agricultural soil effective in remediating soil cadmium pollution, Journal of Environmental Chemical Engineering, 2023, Vol. 11, pp. 111189, DOI: https://doi.org/10.1016/j.jece.2023.111189.

40. Mahaseth T., Kuzminov A., Potentiation of hydrogen peroxide toxicity: from catalase inhibition to stable DNA-iron complexes, Mutation Research. Reviews in Mutation Research, 2017, Vol. 773, pp. 274–281, DOI: https://doi.org10.1016/j.mrrev.2016.08.006.

41. Paz-Ferreiro J., Fu S., Biological indices for soil quality evaluation: perspectives and limitations, Land Degrad. Dev., 2016, Vol. 27, pp. 14–25, DOI: https://doi.org/10.1002/ldr.2262.

42. Rao M.A., Scelza R., Acevedo F., Diez M.C., Gianfreda L., Enzymes as useful tools for environmental purposes, Chemosphere, 2014, Vol. 107, pp. 145–162.

43. Rutigliano F., Castaldi S., Ascoli R., Papa S., Carfora A., Marzaioli R., Fioretto A., Soil activities related to nitrogen cycle under three plant cover types in Mediterranean environment Appl, Soil Ecol., 2009, Vol. 43 (1), pp. 40–46, DOI: https://doi.org/10.1016/j.apsoil.2009.05.010.

44. Steinweg J.M., Dukes J.S., Paul E.A., Wallenstein M.D., Microbial responses to multi-factor climate change: effects on soil enzymes, Front. Microbiol., 2013, Vol. 4, pp. 1–11, DOI: https://doi.org/10.3389/fmicb.2013.00146.

45. Utobo E.B., Tewari L., Soil enzymes as bioindicators of soil ecosystem status, Applied Ecology and Environmental Research, 2015, Vol. 13 (1), pp. 147–169, DOI: https://doi.org/10.15666/aeer/1301_147169.

46. Verma R.K., Yadav D.V., Singh C.P., Archna S., Asha G., Effects of heavy metals on soil invertase enzyme activity in different soil types, Land Contamination & Reclamation, 2010, Vol. 18 (2), pp. 175–180.

47. Waalewijn-Kool P.L., Rupp S., Lofts S., Svendsen C., van Gestel C.A.M., Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida, Ecotoxicol. Environ. Saf, 2014, Vol. 108, pp. 9–15, DOI: https://doi.org/10.1016/j.ecoenv.2014.06.031.

48. Yan J., Quan G., Ding C., Effects of the Combined Pollution of Lead and Cadmium on Soil Urease Activity and Nitrification, Procedia Environmental Sciences, 2013, Vol. 18, pp. 78–83, DOI: https://doi.org/10.1016/j.proenv.2013.04.011.

49. You L., Zhang R., Dai J., Lin Z., Li Y., Herzberg M., Zhang J., Al-Wathnani H., Zhang C., Feng R., Liu H., Rensing C., Potential of cadmium resistant Burkholderia contaminans strain ZCC in promoting growth of soy beans in the presence of cadmium, Ecotoxicology and Environmental Safety, 2021, Vol. 211, pp. 111914, DOI: https://doi.org/10.1016/j.ecoenv.2021.111914.

50. Zhang Q., Zhu L., Wang J., Xie H., Wang J., Wang F., Sun F., Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition, Environ. Monit. Assess., 2014, Vol. 186, pp. 2801– 2812, DOI: https://doi.org/10.1007/s10661-013-3581-9.

51. Zhang W., Huang Z., He L., Sheng X., Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead–zinc mine tailings, Chemosphere, 2012, Vol. 87, pp. 1171–1178, DOI: https://doi.org/10.1016/j.chemosphere.2012.02.036.


Review

For citations:


Sairanova P.Sh., Eremchenko O.Z. The influence of heavy metals on the enzyme activity within the soils of the nature recreation zone in Perm (Model Experiment). Dokuchaev Soil Bulletin. 2025;(126):204-229. (In Russ.) https://doi.org/10.19047/0136-1694-2025-126-204-229

Views: 51


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)