Preview

Dokuchaev Soil Bulletin

Advanced search

The effect of highly porous biochar on the properties of greenhouse peat substrates

https://doi.org/10.19047/0136-1694-2025-126-230-269

Abstract

Peat is a key component of substrates in greenhouse cultivation, and enhancing its properties through the addition of organic components is a common practice. This study compares highly porous biochars derived from pine nut shells, produced under slow pyrolysis and high-temperature conditions with subsequent activation, as additives partially replacing peat in substrates. The carbon content and degree of organic matter decomposition were determined in peat mixtures with biochars of different concentrations (10% and 20% by volume) and forms (ground and unground). It was found that 20% ground biochar leads to the greatest increase in the C/N ratio, typically observed in undrained or deeper peat layers, indicating a higher intensity of humification that optimally stimulates microbial activity, yet suggesting a possible reduction in nitrogen availability for plants. The concentrations of macro- and micronutrients in mixed peat substrates were determined. The results showed that the addition of ground activated biochar (10–20% by volume) significantly increases the concentration of key macronutrients in the substrate, such as phosphorus, potassium, and calcium by factors of 4.9–5.9, 3.3–3.9, and 1.7–1.8, respectively, demonstrating the promising potential of activated biochar for improving the nutrient properties of peat substrates. Particular attention was paid to analyzing the impact of biochars on the content of heavy metals and non-metals, confirming their potential effectiveness and environmental safety. The data obtained suggest the possibility of partially replacing peat with highly porous biochars, especially in ground form, which may contribute to increased crop yields and enhanced plant resistance to stress conditions.

About the Authors

A. A. Dryagina
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003



K. O. Ponomarev
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003



T. A. Kremleva
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003



E. I. Elina
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003



N. A. Shulaev
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003



L. M. Khainak
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003



References

1. Akimova A.S., Krugovorot soedinenii fosfora v pochve (The cycle of phosphorus compounds in soil), International Research Journal, 2023, Vol. 134, No. 8, pp. 1–4, DOI: https//doi.org/10.23670/IRJ.2023.134.38.

2. Beliatsky V.N., Osnovy metodov atomno-absorbtsionnoi i atomno-emissionnoi spektroskopii (Fundamentals of atomic absorption and atomic emission spectroscopy). Minsk: BSMU, 2015, 40 p.

3. V Tyumeni budut razvivat' dobychu torfa vmeste s predpriyatiyami Belarusi. URL: https://tyumen-news.net/economy/2024/05/23/377097.html.

4. Vasilevich R.S., Makro- i mikroelementnyi sostav merzlotnykh bugristykh torfyanikov lesotundry evropeiskogo severo-vostoka Rossii (Macro- and microelement composition of permafrost hummocky peatlands of the European northeast of Russia), Geokhimiya, 2018, No. 12, pp. 1158– 1172, DOI: https://doi.org/10.1134/s0016752518100126.

5. Kabata-Pendias A., Pendias Kh., Mikroelementy v pochvakh i rasteniyakh, Moscow: Mir, 1989. 439 p.

6. Karpenko L.V., Mikroelementnyi sostav torfyanykh pochv Nizhnego Priangar'ya (Microelement composition of peat soils of the Lower Angara region), Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta, 2009, No. 4, pp. 139–144.

7. Mikova N.M., Ivanov I.P., Zhizhaev A.M., Kuznetsov B.N., Vliyanie termoshchelochnoi aktivatsii NaOH kory listvennitsy na strukturu i sorbtsionnye svoistva poluchennykh aktivnykh uglei (Influence of thermalkali activation of NaOH bark of larch on structure and sorption properties of the received active carbon), Zhurnаl Sibirskogo federalnogo universiteta. Khimiya, 2024, No. 17 (3), pp. 407–418.

8. Moiseeva E.V., Potapova I.A., Atomno-absorbtsionnoe opredelenie rtuti v moche metodom kholodnogo para s ispol'zovaniem rtutno-gidridnoi pristavki (Atomic absorption determination of mercury in urine by the method of cold vapor with the use of mercury hydride attachment), Meditsina truda i promyshlennaya ekologiya, 2019, Vol. 59, No. 10, pp. 887–891, DOI: https://doi.org/10.31089/1026-9428-2019-59-10-887-891.

9. Moskovchenko D.V., Romanenko E.A., Elemental composition of soils of the Pur-Taz interfluve, Dokuchaev Soil Bulletin, 2020, Vol. 103, pp. 51–84. DOI: https://doi.org/10.19047/0136-1694-2020-103-51-84.

10. Ponomarev K.O., Dryagina A.A., Filimonenko E.A., Dimitryuk I.D., Effect of biochars on the concentration of plant-available elements in the soil, Dokuchaev Soil Bulletin, 2024, Vol. 120, pp. 265–294, DOI: https://doi.org/10.19047/0136-1694-2024-120-265-294.

11. Spirina V.Z., Solov'eva T.P., Agrokhimicheskie metody issledovaniya pochv, rastenii i udobrenii (Agrochemical methods of studying soil, plants and fertilizers), Tomsk: TGU, 2014, 336 p.

12. Stepanova V.A., Pokrovskii O.S., Makroelementnyi sostav torfa vypuklykh verkhovykh bolot srednei taigi Zapadnoi Sibiri (Macroelement composition of peat from convex upland bogs of the middle taiga of Western Siberia) (na primere bolotnogo kompleksa “Mukhrino”) (using the example of the Mukhrino bog complex), Vestnik Tomskogo gosudarstvennogo universiteta, 2011, No. 352, pp. 211–214.

13. Tabakaev R.B., Ponomarev K.O., Kalinich I.K. Gaidabrus M.A., Shulaev N.A., Eletskii P.M., Kompleksnaya SVCh-pererabotka vysokozol'nogo burogo uglya dlya nuzhd energeticheskoi i metallurgicheskoi otraslei (Complex microwave processing of high-ash brown coal for the needs of the energy and metallurgical industries), Izvestiya Tomskogo politekhnicheskogo universiteta Inzhiniring georesursov, 2024, Vol. 335, No. 1, pp. 57–68, DOI: https://doi.org/10.18799/24131830/2024/1/4336.

14. Timofeeva M.V., Goncharova O.Yu., Matyshak G.V., Bochkova S.D., Kadulin M.S., Carbon leaching from peat soils of the north of Western Siberia under different hydrological conditions, Dokuchaev Soil Bulletin, 2024, Vol. 119, pp. 211–241, DOI: https://doi.org/10.19047/0136-1694-2024-119-211-241.

15. Tishkovich A.V., Meerovskii A.S., Viryasov G.P. Usyukevich G.A., Barannikova E.V., Torf na udobrenie (Peat as fertilizer), Nauka i tekhnika, Minsk: In-t torfa AN BSSR, 1983. 103 p.

16. Tomina E.V., Khodosova N.A., Manukovskaya V.E., Lukin A.N., Korchagina A.Yu., Vliyanie ul'trazvukovoi obrabotki na sorbtsionno-poverkhnostnye kharakteristiki berezovogo biouglya (Influence of ultrasonic treatment on sorption-surface characteristics of birch biochar), Sorbtsionnye i khromatograficheskie protsessy, 2023, Vol. 23, No. 3, pp. 384–394.

17. Kholodov V.A., Farkhodov Yu.R., Yaroslavtseva N.V., Aidiev A.Yu., Lazarev V.I., Il'in B.S., Kulikova N.A., Termolabil'noe i termostabil'noe organicheskoe veshchestvo chernozemov raznogo zemlepol'zovaniya (Thermolabile and thermostable organic matter of chernozems of different land use), Pochvovedenie, 2020, No. 8, pp. 970–982, DOI: https://doi.org/10.31857/s0032180x20080080.

18. Shvartau V.V., Virych P.A., Makoveichuk T.I., Artemenko A.Yu., Kal'tsii v rastitel'nykh kletkakh (Calcium in plant cells), Vestnik Dnepropetrovskogo universiteta. Seriya: Biologiya. Ekologiya, 2014, Vol. 22, No. 1, pp. 19–32.

19. Yakovlev E.Yu., Druzhinina A.S., Druzhinin S.V., Bedrina D.D., Orlov A.S., Spirov R.K., Zhukovskaya E.V., Otsenka fiziko-khimicheskikh parametrov i raspredeleniya metallov v verkhovom bolote Arkhangel'skoi oblasti (Assessment of physical and chemical parameters and distribution of metals in the upper bog of the Arkhangelsk region), Uspekhi sovremennogo estestvoznaniya, 2020, No. 5, pp. 115–120.

20. Yakonovskaya T.B, Osobennosti primeneniya dokhodnogo podkhoda k otsenke stoimosti biznesa predpriyatii torfyanoi otrasli pri vybore strategicheskikh reshenii (chast' 2) (Features of applying the income approach to assessing the value of businesses in the peat industry when choosing strategic solutions (part 2)), Vestnik Tverskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Nauki ob obshchestve i gumanitarnye nauki, 2024, No. 1 (36), pp. 78–90, DOI: https://doi.org/10.46573/2409-1391-2024-1-78-90.

21. Ahmed N., Zhang B., Chachar Z., Li J., Xiao G., Wang, Q., Tu P., Micronutrients and their effects on horticultural crop quality, productivity and sustainability, Scientia Horticulturae, 2024, Vol. 323, P. 112512, DOI: https://doi.org/10.1016/j.scienta.2023.112512.

22. Arbuzov S.I., Maslov S.G., Finkelman R.B., Mezhibor A.M., Ilenok S.S., Blokhin M.G., Peregudina E.V., Modes of occurrence of rare earth elements in peat from Western Siberia, Journal of Geochemical Exploration, 2018, Vol. 184, pp. 40–48, DOI: https://doi.org/10.1016/j.gexplo.2017.10.012.

23. Beaulne J. Garneau M., Magnan G., Boucher É., Peat deposits store more carbon than trees in forested peatlands of the boreal biome, Scientific Reports, 2021, Vol. 11, No. 1, pp. 2657, DOI: https://doi.org/10.1038/s41598-021-82004-x

24. Biederman L.A., Harpole W.S., Biochar and its effects on plant productivity and nutrient cycling: a meta‐ analysis, GCB bioenergy, 2013, Vol. 5, No. 2, pp. 202–214, DOI: https://doi.org/10.1111/gcbb.12037.

25. Bu X., Ji H., Ma W., Xian T., Zhou Z., Wang F., Xue J., Effects of biochar as a peat-based substrate component on morphological, photosynthetic and biochemical characteristics of Rhododendron delavayi Franch, Scientia Horticulturae, 2022, Vol. 302, pp. 111148, DOI: https://doi.org/10.1016/j.scienta.2022.111148.

26. Chai W., Wang F., Miao Z., Che N., Chai W., Hydrophilic porous activated biochar with high specific surface area for efficient capacitive deionization, Desalination and Water Treatment, 2024, Vol. 320, pp. 100617, DOI: https://doi.org/10.1016/j.dwt.2024.100617.

27. Chrysargris A., Prasad M., Kavanagh A., Tzortzakis N., Biochar type, ratio, and nutrient levels in growing media affects seedling production and plant performance, Agronomy, 2020, Vol. 10, No. 9, pp. 1421, DOI: https://doi.org/10.3390/agronomy10091421.

28. De Melo C.A., De Oliveira L.K., Goveia D., Enrichment of tropical peat with micronutrients for agricultural applications: evaluation of adsorption and desorption processes, Journal of the Brazilian Chemical Society, 2014, Vol. 25, pp. 36–49, DOI: https://doi.org/10.5935/0103-5053.20130265.

29. De Tender C.A., Debode J., Vandecasteele B., D’Hose T., Cremelie P., Haegeman A., Maes M., Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar, Applied Soil Ecology, 2016, Vol. 107, pp. 1–12, DOI: https://doi.org/10.1016/j.apsoil.2016.05.001.

30. Handiso B., Pääkkönen T., Wilson B.P., Effect of pyrolysis temperature on the physical and chemical characteristics of pine wood biochar, Waste Management Bulletin, 2024, Vol. 2, No. 4, pp. 281–287, DOI: https://doi.org/10.1016/j.wmb.2024.11.008.

31. Huang L., Niu G., Feagley S.E., Gu M., Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate, Industrial Crops and Products, 2019, Vol. 129, pp. 549–560, DOI: https://doi.org/10.1016/j.indcrop.2018.12.044.

32. Kabir E, Kim K.H., Kwon E.E., Biochar as a tool for the improvement of soil and environment, Frontiers in Environmental Science, 2023, Vol. 11, pp. 1324533, DOI: https://doi.org/10.3389/fenvs.2023.1324533.

33. Lévesque V., Jeanne T., Dorais M., Ziadi N., Hogue R., Antoun H., Biochars improve tomato and sweet pepper performance and shift bacterial composition in a peat-based growing medium, Applied soil ecology, 2020, Vol. 153, pp. 103579, DOI: https://doi.org/10.1016/j.apsoil.2020.103579.

34. Lima J.Z., Ogura A.P., Espíndola E.L.G., da Silva E.F., Rodrigues V.G.S, Post-sorption of Cd, Pb, and Zn onto peat, compost, and biochar: Short-term effects of ecotoxicity and bioaccessibility, Chemosphere, 2024, Vol. 352, pp. 141521, DOI: https://doi.org/10.1016/j.chemosphere.2024.141521.

35. Liu Q., Zang G.L., Zhao Q., Removal of copper ions by functionalized biochar based on a multicomponent Ugi reaction // RSC advances, 2021, Vol. 11, No. 42, pp. 25880–25891, DOI: http://dx.doi.org/10.1039/D1RA04156H.

36. Margenot A.J., Griffin D.E., Alves B.S., Rippner D.A., Li C., Parikh S.J., Substitution of peat moss with softwood biochar for soil-free marigold growth, Industrial Crops and Products, 2018, Vol. 112, pp. 160–169, DOI: https://doi.org/10.1016/j.indcrop.2017.10.053.

37. Méndez A., Paz-Ferreiro J., Gil E., Gascó G., The effect of paper sludge and biochar addition on brown peat and coir based growing media properties, Scientia Horticulturae, 2015, Vol. 193, pp. 225–230, DOI: https://doi.org/10.1016/j.scienta.2015.07.032.

38. Nieto A., Gasco G., Paz-Ferreiro J., Fernández J.M., Plaza C., Mendez A., The effect of pruning waste and biochar addition on brown peat based growing media properties, Scientia Horticulturae, 2016, Vol. 199, pp. 142–148, DOI: https://doi.org/10.1016/j.scienta.2015.12.012.

39. Osman A.I., Fawzy S., Farghali M., El-Azazy M., Elgarahy A.M., Fahim R.A, Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review, Environmental Chemistry Letters, 2022, Vol. 20, No. 4, pp. 2385–2485, DOI: https://doi.org/10.1007/s10311-022-01424-x.

40. Qian T., Wang L., Le C., Zhou Y., Low-temperature-steam activation of phosphorus in biochar derived from enhanced biological phosphorus removal (EBPR) sludge, Water Research, 2019, Vol. 161, pp. 202–210, DOI: https://doi.org/10.1016/j.watres.2019.06.008.

41. Singh Y.S.P., Bhandari S., Bhatta D., Poudel A., Bhattarai S., Yadav P., Oli B., Biochar application: A sustainable approach to improve soil health, Journal of Agriculture and Food Research, 2023, Vol. 11, pp. 100498, DOI: https://doi.org/10.1016/j.jafr.2023.100498.

42. Stanton C., Sanders D., Krämer U., Podar D., Zinc in plants: Integrating homeostasis and biofortification, Molecular Plant, 2022, Vol. 15, No. 1, pp. 65–85, DOI: https://doi.org/10.1016/j.molp.2021.12.008.

43. Tammeorg P., Brandstaka T., Simojoki A., Helenius J., Nitrogen mineralisation dynamics of meat bone meal and cattle manure as affected by the application of softwood chip biochar in soil, Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2012, Vol. 103, No. 1, pp. 19–30, DOI: https://doi.org/10.1017/S1755691012000047.

44. Vasilevich R., Vasilevich M., Lodygin E., Abakumov E., Geochemical characteristics of the vertical distribution of heavy metals in the hummocky peatlands of the cryolithozone, International Journal of Environmental Research and Public Health, 2023, Vol. 20, No. 5, pp. 3847, DOI: https://doi.org/10.3390/ijerph20053847.

45. Vaughn S.F., Kenar J.A., Thompson A.R., Peterson S.C., Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates, Industrial crops and products, 2013, Vol. 51, pp. 437–443, DOI: https://doi.org/10.1016/j.indcrop.2013.10.010.

46. Wang D., Li B., Yang H., Zhao C., Yao D., Chen H., Influence of biochar on the steam reforming of biomass volatiles: effects of activation temperature and atmosphere //Energy & Fuels, 2019, Vol. 33, No. 3, P. 2328–2334, DOI: https://doi.org/10.1021/acs.energyfuels.8b04412.

47. Wang L., Olsen M. N., Moni C., Dieguez-Alonso A., de la Rosa J. M., Stenrød M., Mao L., Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600 C, Applications in Energy and Combustion Science, 2022, Vol. 12, pp. 100090, DOI: https://doi.org/10.1016/j.jaecs.2022.100090.

48. Yan J., Yu P., Liu C., Li Q., Gu M., Replacing peat moss with mixed hardwood biochar as container substrates to produce five types of mint (Mentha spp.), Industrial Crops and Products, 2020, Vol. 155, pp. 112820, DOI: https://doi.org/10.1016/j.indcrop.2020.112820.

49. Zhang D., Peng Q., Yang R., Lin W., Wang H., Zhou W., Ouyang L., Slight carbonization as a new approach to obtain peat alternative, Industrial Crops and Products, 2023, Vol. 202, pp. 117041, DOI: https://doi.org/10.1016/j.indcrop.2023.117041.

50. Zulfiqar F., Allaire S.E., Akram N.A., Méndez A., Younis A., Peerzada A.M., Wright, S.R., Challenges in organic component selection and biochar as an opportunity in potting substrates: a review, Journal of Plant Nutrition, 2019, Vol. 42, No. 11–12, pp. 1386–1401, DOI: https://doi.org/10.1080/01904167.2019.1617310.


Supplementary files

Review

For citations:


Dryagina A.A., Ponomarev K.O., Kremleva T.A., Elina E.I., Shulaev N.A., Khainak L.M. The effect of highly porous biochar on the properties of greenhouse peat substrates. Dokuchaev Soil Bulletin. 2025;(126):230-269. (In Russ.) https://doi.org/10.19047/0136-1694-2025-126-230-269

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)