Preview

Dokuchaev Soil Bulletin

Advanced search

Labile and stable organic matter components in agricultural soils

https://doi.org/10.19047/0136-1694-2025-124-184-223

Abstract

The article presents an analysis of the literature on labile and stable components of organic matter (OM) in agricultural soils. The labile components include light fractions (LF) identified by particle density (< 1.8 g·cm-3), while the stable components include clay fractions (Clay) identified by particle size (<1–2 μm). Labile components of OM are very sensitive, while stable components are insensitive to changes in farming and land use systems. As a result, the ratio of carbon in the labile and stable pools, the CLF/CClay ratio, is used as an indicator of the OM quality in agricultural landscapes. Physical soil fractionation methods used to isolate labile and stable components of OM are laborious and, therefore, not suitable for regional and global scale studies. The proposed theoretically substantiated express indicators of OM can be obtained using the proposed fairly simple granulometric fractionation method. These express indicators of OM will be characterized by different biogeochemical stability and their application for long-term and operational carbon monitoring in soils seems very promising. Experimental verification of theoretically justified simplified indicators is recommended in order to identify among them the correct indicators that most adequately reflect the impact of native and anthropogenic factors on the soil OM quality at different time scales.

About the Authors

Z. S. Artemyeva
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

Zinaida S. Artemyev

7 Bld. 2 Pyzhevskiy per., Moscow 119017

 



B. M. Kogut
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

Boris M. Kogut 

7 Bld. 2 Pyzhevskiy per., Moscow 119017



References

1. Artemyeva Z.S., Sravnitel'naya kharakteristika prirodnoslitykh i uplotnennykh pri oroshenii pochv: Dis. … kand. biol. nauk (Comparative characteristics of naturally compacted and irrigated soils, Cand. Biol. Sci. thesis), Moscow: Lomonosov Moscow State University, 1991, 125 p.

2. Artemyeva Z.S., Alekseeva T.V., Samoilova E.M., Vysokodispersnyye fraktsii slitykh gorizontov prirodnoslitykh i uplotnennykh pri oroshenii pochv (Highly dispersed fractions of continuous horizons of naturally compacted and irrigated soils), Vestnik MGU, Seriya Pochvovedeniye, 1991, No. 3, pp. 39–46.

3. Artemyeva Z.S., Organicheskiye i organo-glinistyye kompleksy agrogenno-degradirovannykh pochv: Avtoref. dis … dokt. biol. nauk (Organic and organo-clayey complexes of agrogenic-degraded soils, Extended abstract of Cand. Biol. Sci. thesis), Moscow: Lomonosov Moscow State University, 2008, 48 p.

4. Artemyeva Z.S., Vasenev I.I., Sileva T.M., Sistematizatsiya organoglinistykh kombinatsiy pochv Tsentra Russkoy ravniny (Systematization of organo-clay combinations of soils of the Central Russian Plain), Vestnik MGU, 2009, No. 4, pp. 17–21.

5. Artemyeva Z.S., Fedotov G.N., Sostav funktsional'nykh pulov legkorazlagayemogo organicheskogo veshchestva avtomorfnykh zonal'nogo ryada pochv Tsentra Russkoy ravniny (Composition of functional pools of easily decomposed organic matter of automorphic zonal soils of the Central Russian Plain), Vestnik Moskovskogo universiteta, Seriya 17: Pochvovedeniye, 2013, No. 4, pp. 3–10.

6. Artemyeva Z.S., Kirillova N.P., The role of organic and mineralogical interaction products in the structure forming and humus forming of the basic types of soils in the Center of Russian Plain, Dokuchaev Soil Bulletin, 2017, Vol. 90, pp. 73–95, DOI: https://doi.org/10.19047/0136-1694-2017-90-73-95.

7. Artemyeva Z.S., Zazovskaya E.P., Zasukhina E.S., Tsomaeva E.V., Izotopnyy sostav ugleroda organicheskogo veshchestva vodoustoychivykh strukturnykh otdel'nostey tipichnogo chernozema v kontrastnykh variantakh zemlepol'zovaniya (Isotopic composition of carbon in organic matter of waterstable structural units of typical chernozem in contrasting land use options), Pochvovedeniye, 2023, No. 3, pp. 339–352, DOI: https://doi.org/10.31857/S0032180X22601098.

8. Ganzhara N.F., Borisov B.A., Florinsky M.A., Legkorazlagayemyye organicheskiye veshchestva pochv (Easily decomposed organic matter of soils), Khimizatsiya s/kh., 1990, No. 1, pp. 53–55.

9. Ivanov A.L., Kogut B.M., Semenov V.M., Turina Oberlander M., Waksman Schanbacher N., The development of theory on humus and soil organic matter: from Turin and Waksman to Present Days, Dokuchaev Soil Bulletin, 2017, Vol. 90, pp. 3–38, DOI: https://doi.org/10.19047/0136-1694-2017-90-3-38.

10. Kogut B.M., Transformatsiya gumusovogo sostoyaniya chernozemov pri ikh sel'skokhozyaystvennom ispol'zovanii: Avtoref. dis. … dokt. s.-kh. nauk (Transformation of the humus state of chernozems during their agricultural use, Extended abstract of Dr. agric. sci. thesis), Moscow: V.V. Dokuchaev Soil Science Institute, 1996. 48 p.

11. Kogut B.M., Travnikova L.S., Titova N.A., Kuvaeva Yu.V., Shevtsova L.K., Schultz E., Express indicator of agroecological monitoring of the humus state of chernozems, Dokuchaev Soil Bulletin, 2002, Vol. 56, pp. 65–71.

12. Kogut B.M., Printsipy i metody otsenki soderzhaniya transformiruyemogo organicheskogo veshchestva v pakhotnykh pochvakh (Principles and methods for assessing the content of transformable organic matter in arable soils), Pochvovedeniye, 2003, No. 3, pp. 308–316.

13. Kogut B.M., Masyutenko N.P., Shultz E., Kiseleva O.V., Dubovik E.V., Sysuev S.A., Organicheskoye veshchestvo agregatov chernozemov (Organic matter of chernozem aggregates), Agroekologicheskaya optimizatsiya zemledeliya (Agroecological optimization of agriculture), Proc. Sci. Pract. Conf., Kursk, 2004, pp. 418–420.

14. Kogut B.M., Sysuev S.A., Kholodov V.A., Vodoprochnost' i labil'nyye gumusovyye veshchestva tipichnogo chernozema pri raznom zemlepol'zovanii (Water stability and labile humus substances of typical chernozem under different land use), Pochvovedeniye, 2012, No. 5, pp. 555–561.

15. Kogut B.M., Semenov V.M., Konvergentnaya metodologiya issledovaniya pochvennogo organicheskogo veshchestva zemel' sel'skokhozyaystvennogo naznacheniya (Convergent methodology for studying soil organic matter of agricultural lands), Sovremennyye metody issledovaniy pochv i pochvennogo pokrova (Modern methods of soil and soil cover research), Proc. of the AllRussian Conf. with international participation, Moscow: V.V. Dokuchaev Soil Science Institute, 2015, pp. 51–64.

16. Kogut B.M., Semenov V.M., Artemyeva Z.S., Danchenko N.N., Degumusirovaniye i pochvennaya sekvestratsiya ugleroda (Dehumusification and soil carbon sequestration), Agrokhimiya, 2021, No. 5, pp. 3–13, DOI: https://doi.org/10.31857/S0002188121050070.

17. Kononova M.M., Pankova N.A., Belchikova N.P., Izmeneniye v soderzhanii i sostave organicheskogo veshchestva pri okul'turivanii pochv (Changes in the content and composition of organic matter during soil cultivation), Pochvovedeniye, 1949, No. 1, pp. 28–37.

18. Kuvaeva Yu.V., Frid A.S., Dinamika organicheskogo veshchestva tonkodispersnykh chastits dernovo-podzolistykh pochv v dlitel'nykh opytakh (Dynamics of organic matter of fine particles of sod-podzolic soils in longterm experiments), Pochvovedeniye, 2002, No. 1, pp. 52–64.

19. Assessment of soils by humus content and quality for production models of soil fertility: (Recommendations), Moscow: V.V. Dokuchaev Soil Science Institute, VO “Agropromizdat”, 1990, 28 p.

20. Recommendations for studying the balance and transformation of organic matter during agricultural use and intensive soil cultivation, Moscow: V.V. Dokuchaev Soil Science Institute, 1984, 96 p.

21. Semenov V.M., Kravchenko I.K., Ivannikova L.A. et al., Eksperimental'noye opredeleniye aktivnogo organicheskogo veshchestva pochvy prirodnykh i sel'skokhozyaystvennykh ekosistem (Experimental determination of active organic matter of the soil of natural and agricultural ecosystems), Pochvovedeniye, 2006, No. 3, pp. 282–292.

22. Semenov V.M., Kogut B.M., Pochvennoye organicheskoye veshchestvo (Soil organic matter), Moscow: GEOS, 2015, 233 p.

23. Tate R., Organicheskoye veshchestvo pochvy (Soil organic matter), Moscow: Mir, 1991, 400 p.

24. Titova N.A., Travnikova L.S., Kuvaeva Yu.V., Sostav komponentov tonkodispersnykh chastits pakhotnoy dernovo-podzolistoy pochvy (Composition of the components of finely dispersed particles of arable sodpodzolic soil), Pochvovedeniye, 1989, No. 6, pp. 89–97.

25. Travnikova L.S., Titova N.A., Faktory, reguliruyushchiye raspredeleniye organicheskogo veshchestva po fraktsiyam < 5 mkm v pochvakh solontsovogo kompleksa Kalmykii (Factors regulating the distribution of organic matter by fractions < 5 µm in the soils of the solonetz complex of Kalmykia), Pochvovedeniye, 1978, No. 11, pp. 121–130.

26. Travnikova L.S., Titova N.A., Shaimukhametov M.Sh., Rol' produktov vzaimodeystviya organicheskoy i mineral'noy sostavlyayushchikh v genezise i plodorodii pochv (The role of products of interaction of organic and mineral components in the genesis and fertility of soils), Pochvovedeniye, 1992, No. 10, pp. 81–96.

27. Travnikova L.S., Shaimukhametov M.Sh., Produkty organo-mineral'nogo vzaimodeystviya i ustoychivost' pochv k degradatsii (Products of organomineral interaction and soil resistance to degradation), In: Modern Problems of Soil Science (Sovremennyye problemy pochvovedeniya), Research Works of the V.V. Dokuchaev Soil Science Institute, Moscow, 2000, pp. 356–368.

28. Travnikova L.S., Artemyeva Z.S., Fizicheskoye fraktsionirovaniye organicheskogo veshchestva pochv s tsel'yu izucheniya yego ustoychivosti k biodegradatsii (Physical fractionation of soil organic matter in order to study its resistance to biodegradation), Ekologiya i pochvy (Ecology and Soils), Abstract of the 10th All-Russian School, Vol. IV, Pushchino: ONTI PSC RAS, 2001, pp. 337–346.

29. Travnikova L.S., Zakonomernosti gumusonakopleniya: novyye dannyye i ikh interpretatsiya (Regularities of humus accumulation: new data and their interpretation), Pochvovedeniye, 2002, No. 7, pp. 832–843.

30. Tyurin I.V., Organicheskoye veshchestvo pochv (Organic matter of soils), Moscow: Selkhozgiz, 1937, 247 p.

31. Fedotov G.N., Artem'yeva Z.S., Vliyaniye kolloidnoy sostavlyayushchey pochv na vydeleniye granulo-densimetricheskikh fraktsiy (Influence of the colloidal component of soils on the allocation of granulo-densimetric fractions), Pochvovedeniye, 2015, No. 1, pp. 61–70, DOI: https://doi.org/10.7868/S0032180X15010049.

32. Shaimukhametov M.Sh., Voronina K.A., Metodika fraktsionirovaniya organno-glinistykh kompleksov pochv s pomoshch'yu laboratornykh tsentrifug (Method of fractionating organoclay complexes of soils using laboratory centrifuges), Pochvovedeniye, 1972, No. 8, pp. 134–138.

33. Shaimukhametov M.Sh., Travnikova L.S., Method of extracting an absorbing complex from soil, Author's certificate No. 1185238, USSR State Committee for Inventions and Discoveries, Application No. 3732977, Priority of invention 30.03.1984.

34. Adair E.C., Parton W.J., del Grosso S.J., Silver W.L., Harmon M.E., Hall S.A., Burke I.C., Hart S.C., Simple three pool kinetic model describes patterns of long-term litter decomposition in diverse climates, Glob. Change Biol., 2008, Vol. 14, pp. 2636–2660, DOI: https://doi.org/10.1111/j.1365-2486.2008.01674.x.

35. Andren O., Paustian K., Barley straw decomposition in the field: a comparison of models, Ecology, 1987, Vol. 68, pp. 1190–1200, DOI: https://doi.org/10.2307/1939203.

36. Angst G., Mueller K.E., Castellano M.J., Vogel C., Wiesmeier M., Mueller C.W., Unlocking complex soil systems as carbon sinks: multi-pool management as the key, Nature Communications, 2023, Vol. 14, Art. No. 2967, DOI: https://doi.org/10.1038/s41467-023-38700-5.

37. Angst G., Mueller K.E., Nierop K.G.J., Simpson M.J., Plant- or microbialderived? A review on the molecular composition of stabilized soil organic matter, Soil Biol. Biochem., 2021, Vol. 156, pp. 108189, DOI: https://doi.org/10.1016/j.soilbio.2021.108189.

38. Artemyeva Z., Danchenko N., Kolyagin Yu., Kirillova N., Kogut B., Chemical structure of soil organic matter and its role in aggregate formation in Haplic Chernozem under the contrasting land use variants, Catena, 2021, Vol. 204, pp. 105403, DOI: https://doi.org/10.1016/j.catena.2021.105403.

39. Artemyeva Z.S., Kogut B.M., The effect of tillage on organic carbon stabilization in microaggregates in different climatic zones of European Russia, Agriculture, 2016, Vol. 6(4), pp. 63, DOI: https://doi.org/10.3390/agriculture6040063.

40. Baisden W.T., Amundson R., Cook A.C., Brenner D.L., The turnover and storage of C and N in five density fractions from California annual grassland surface soil, Glob. Biogeochem. Cycles, 2002, Vol. 16, pp. 1117–1132, DOI: https://doi.org/10.1029/2001GB001822.

41. Balabane M., Plante A., Aggregation and carbon storage in silty soil using physical fractionation techniques, Eur. J. Soil Sci., 2004, Vol. 55, pp. 415– 127, DOI: https://doi.org/10.1111/j.1351-0754.2004.0608.x.

42. Balesdent J., Chenu C., Balabane M., Relationship of soil organic matter dynamics to physical protection and tillage, Soil Till. Res., 2000, Vol. 53(3–4), pp. 215–230, DOI: https://doi.org/10.1016/S0167-1987(99)00107-5.

43. Beare M.H., McNeill S.J., Curtin D. et al., Estimating the organic carbon stabilisation capacity and saturation deficit of soils: a New Zealand case study, Biogeochem, 2014, Vol. 120, pp. 71–87, DOI: https://doi.org/10.1007/s10533-014-9982-1.

44. Bol R., Poirier N., Balesdent J., Gleixner G., Molecular turnover time of soil organic matter in particle-size fractions of an arable soil, Rapid Commun. Mass Spectrom., 2009, Vol. 23, pp. 2551–2558, DOI: https://doi.org/10.1002/rcm.4124.

45. Cambardella C.A., Elliott E.T., Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence, Soil Sci. Soc. Am. J., 1992, Vol. 56(3), pp. 777–783. DOI: https://doi.org/10.2136/SSSAJ1992.03615995005600030017X.

46. Carter M.R., Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions, Agron. J., 2002, Vol. 94, pp. 38–47, DOI: https://doi.org/10.2134/agronj2002.3800.

47. Chenu C., Plante A.F., Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the ‘primary organomineral complex’, Eur. J. Soil Sci., 2006, Vol. 57, pp. 596–607, DOI: https://doi.org/10.1111/j.1365-2389.2006.00834.x.

48. Christensen B.T., Physical fractionation of soil and structural and functional complexity in organic matter turnover, Eur. J. Soil Sci., 2001, Vol. 52, pp. 345–353, DOI: https://doi.org/10.1046/j.1365-2389.2001.00417.x.

49. Cotrufo M.F., Ranalli M.G., Haddix M.L., Six J., Lugato E., Soil carbon storage informed by particulate and mineral-associated organic matter, Nature Geoscience, 2019, Vol. 12, pp. 989–994, DOI: https://doi.org/10.1038/s41561-019-0484-6.

50. Delahaie A.A., Barré P., Baudin F. et al., Elemental stoichiometry and Rock-Eval® thermal stability of organic matter in French topsoils, SOIL, 2023, Vol. 9, pp. 209–229, DOI: https://doi.org/10.5194/soil-9-209-2023.

51. Delahaie A.A., Cécillon L., Stojanova M. et al., Investigating the complementarity of thermal and physical soil organic carbon fractions, SOIL, 2024, Vol. 10, pp. 795–812, DOI: https://doi.org/10.5194/soil-10-795-2024.

52. Dobarco M.R., Wadoux A.M.J-C., Malone B. et al., Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty, Biogeosci., 2023, Vol. 20, pp. 1559–1586, DOI: https://doi.org/10.5194/bg-20-1559-2023.

53. Dupla X., Gondret K., Sauzet O. et al., Changes in topsoil organic carbon content in the Swiss leman region cropland from 1993 to present. Insights from large scale on-farm study, Geoderma, 2021, Vol. 400, pp. 115125, DOI: https://doi.org/10.1016/j.geoderma.2021.115125.

54. Gerzabek M.H., Haberhauer G., Kirchmann H., Soil organic matter pools and carbon-13 natural abundances in particle-size fractions of a long-term agricultural field experiment receiving organic amendments, Soil Sci. Soc. Am. J., 2001, Vol. 65, pp. 352–358, DOI: https://doi.org/10.2136/SSSAJ2001.652352X.

55. Golchin A., Oades J.M., Skjemstad J.O., Clarke P., Study of free and occluded particulate organic matter in soils by solid-state 13C CP/MAS NMR spectroscopy and scanning electron microscopy, Austral. J. Soil Res., 1994, Vol. 32, pp. 285–309, DOI: https://doi.org/10.1071/SR9940285.

56. Gregorich E.G., Carter M.R., Angers D.A., Monreal C.M., Ellert B.H., Towards a minimum data set to assess soil organic matter quality in agricultural soils, Can. J. Soil Sci., 1994, Vol. 74, pp. 367–385, DOI: https://doi.org/10.4141/cjss94-051.

57. Guillaume T., Makowski D., Libohova Z. et al., Soil organic carbon saturation in cropland-grassland systems: Storage potential and soil quality, Geoderma, 2022, Vol. 406, pp. 115529, DOI: https://doi.org/10.1016/j.geoderma.2021.115529.

58. Heckman K., Throckmorton H., Horwath W.R., Swanston C.W., Rasmussen C., Variation in the Molecular Structure and Radiocarbon Abundance of Mineral-Associated Organic Matter across a Lithosequence of Forest Soils, Soil Syst., 2018, Vol. 2, pp. 36, DOI: https://doi.org/10.3390/soilsystems2020036.

59. Hurisso T.T., Davis J.G., Brummer J. et al., Rapid changes in microbial biomass and aggregate size distribution in response to changes in organic matter management in grass pasture, Geoderma, 2013, Vol. 193, pp. 68–75, DOI: https://doi.org/10.1016/j.geoderma.2012.10.016.

60. Jastrow J.D., Boutton T.W., Miller R.M., Carbon dynamics of aggregateassociated organic matter estimated by carbon-13 natural abundance, Soil Sci. Soc. Am. J., 1996, Vol. 60, pp. 801–807, DOI: https://doi.org/10.2136/sssaj1996.03615995006000030017x.

61. Jastrow J.D., Miller R.M., Lussenhop J., Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie, Soil Biol. Biochem., 1998, Vol. 30(7), pp. 905–916, DOI: https://doi.org/10.1016/S0038-0717(97)00207-1.

62. Jenkinson D.S., Coleman K., Calculating the annual input of organic matter to soil from measurements of total organic carbon and radiocarbon, Eur. J. Soil Sci., 1994, Vol. 45, pp. 167–174, DOI: https://doi.org/10.1111/j.1365-2389.1994.tb00498.x.

63. John B., Yamashita T., Ludwig B., Flessa H., Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, 2005, Vol. 128, pp. 63–79, DOI: https://doi.org/10.1016/j.geoderma.2004.12.013.

64. Kögel-Knabner I., Wiesmeier M., Mayer S., Mechanisms of soil organic carbon sequestration and implications for management, In: Understanding and fostering soil carbon sequestration, Cambridge: Burleigh Dodds Sci. Publ. Lim., 2022, pp. 1–36, DOI: https://doi.org/10.19103/AS.2022.0106.02.

65. Kölbl A., Leifeld J., Kögel-Knabner I., A comparison of two methods for the isolation of free and oc-cluded particulate organic matter, J. Plant Nutr. Soil Sci., 2005, Vol. 168, pp. 660–667, DOI: https://doi.org/10.1002/jpln.200521805.

66. Kumar R., Rawat K. S., Singh J. et al., Soil aggregation dynamics and carbon sequestration, J. App. Nat. Sci., 2013, Vol. 5(1), pp. 250–267, DOI: https://doi.org/10.31018/jans.v5i1.314.

67. Laird D.A., Martens D.A. Kingery W.L., Nature of clay-humic complexes in an agricultural soil. I. Chemical, biochemical, and spectroscopic analyses, Soil Sci. Soc. Am. J., 2001, Vol. 65, pp. 1413–1418, DOI: https://doi.org/10.2136/sssaj2001.6551413x.

68. Laub M., Blagodatsky S., Van de Broek M. et al., SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation, Geosci. Model Dev., 2024, Vol. 17, pp. 931–956, DOI: https://doi.org/10.5194/gmd17-931-2024.

69. Lavallee J.M., Soong J.L., Cotrufo M.F., Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Glob. Ch. Biol., 2020, Vol. 26(1), pp. 261–273, DOI: https://doi.org/10.1111/gcb.14859.

70. Mueller C.W., Köegel-Knabner I., Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites, Biol. Fertil. Soils., 2009, Vol. 45, pp. 347–359, DOI: https://doi.org/10.1007/s00374-008-0336-9.

71. Olchin G.P., Ogle S., Frey S.D. et al., Residue Carbon Stabilization in Soil Aggregates of No-Till and Tillage Management of Dryland Cropping Systems, Soil Sci. Soc. Am. J., 2008, Vol. 72, pp. 507–513, DOI: https://doi.org/10.2136/sssaj2006.0417.

72. Parton W.J. The CENTURY model, In: Powlson D.S., Smith P., Smith J.U. (Eds.), Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets, NATO ASI Series I, Springer-Verlag, Heidelberg, 1996, pp. 283–293, DOI: https://doi.org/10.1007/978-3-642-61094-3_23.

73. Pinheiro Junior C.R., Canisares L.P., Abreu M.C. et al., Drivers of carbon stabilization and sequestration in Brazil’s black soils, Catena, 2024, Vol. 246, pp. 108451, DOI: https://doi.org/10.1016/j.catena.2024.108451.

74. Plante A.F., Conant R.T., Paul E.A. et al., Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter, Eur. J. Soil Sci., 2006, Vol. 57, pp. 456–467, DOI: https://doi.org/10.1111/j.1365-2389.2006.00792.x.

75. Poeplau C., Don A., Six J. et al., Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison, Soil Biol. Biochem., 2018, Vol. 125, pp. 10–26, DOI: https://doi.org/10.1016/j.soilbio.2018.06.025.

76. Poeplau C., Don A., A simple soil organic carbon level metric beyond the organic carbon-to-clay ratio, Soil Use Manag., 2023, Vol. 39, pp. 1057–1067, DOI: https://doi.org/10.1111/sum.12921.

77. Prout J.M., Shepherd K.D., McGrath S.P. et al., What is a good level of soil organic matter? An index based on organic carbon to clay ratio, Eur. J. Soil Sci., 2021, Vol. 72, pp. 2493–2503, DOI: https://doi.org/10.1111/ejss.13012.

78. Prout J.M., Shepherd K.D., McGrath S.P. et al., Changes in organic carbon to clay ratios in different soils and land uses in England and Wales over time, Sci. Rep., 2022, Vol. 12, pp. 5162, DOI: https://doi.org/10.1038/s41598-022-09101-3.

79. Pulley S., Taylor H., Prout J.M. et al., The soil organic carbon:clay ratio in North Devon, UK: implications for marketing soil carbon as an asset class, Soil Use Manag., 2023, Vol. 39, pp. 1068–1081, DOI: https://doi.org/10.1111/sum.12920.

80. Rabot E., Saby N.P.A., Martin M.P. et al., Relevance of the organic carbon to clay ratio as a national soil health indicator, Geoderma, 2024, Vol. 443, pp. 116829, DOI: https://doi.org/10.1016/j.geoderma.2024.116829.

81. Roscoe R., Buurman P., Velthorst E.J., Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic matter of a clay Latosol: carbon, nitrogen and δ13C distribution in particle-size fractions, Eur. J. Soil Sci., 2000, Vol. 51, pp. 445–454, DOI: https://doi.org/10.1046/j.1365-2389.2000.00321.x.

82. Schiedung M., Barré P., Poeplau C., Separating fast from slow cycling soil organic carbon – A multi-method comparison on land use change sites, Geoderma, 2025, Vol. 453, pp. 117154, DOI: https://doi.org/10.1016/j.geoderma.2024.117154.

83. Schlüter S. et al., Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime, Nat. Commun., 2022, Vol. 13, pp. 2098, DOI: https://doi.org/10.1038/s41467-022-29605-w.

84. Shang C., Tiessen H., Organic matter stabilization in two semiarid tropical soils: Size, density, and magnetic separations, Soil Sci. Soc. Am. J., 1998, Vol. 62, pp. 1247–1257, DOI: https://doi.org/10.2136/sssaj1998.03615995006200050015x.

85. Silver W.L., Miya R.K., Global patterns in root decomposition: comparisons of climate and litter quality effects, Oecologia, 2001, Vol. 129, pp. 407–419, DOI: https://doi.org/10.1007/s004420100740.

86. Six J., Elliott E.T., Paustian K., Doran J.W., Aggregation and soil organic matter accumulation in cultivated and native grassland soils, Soil Sci. Soc. Am. J., 1998, Vol. 62, pp. 1367–1377, DOI: https://doi.org/10.2136/sssaj1998.03615995006200050032x.

87. Six J., Elliott E.T., Paustian K., Aggregate and soil organic matter dynamics under conventional and no-till systems, Soil Sci. Soc. Am. J., 1999, Vol. 63, pp. 1350–1358, DOI: https://doi.org/10.2136/SSSAJ1999.6351350X.

88. Six J., Connant R.T., Paul E.A., Paustian J., Stabilisation mechanisms of soil organic matter: implications for C-saturation of soils, Plant Soil., 2002, Vol. 241, pp. 155–176, DOI: https://doi.org/10.1023/A:1016125726789.

89. Skadell L.E., Schneider Fl., Gocke M.I. et al., Twenty percent of agricultural management effects on organic carbon stocks occur in subsoils – Results of ten long-term experiments, Agr. Ecosys. Environ., 2023, Vol. 356, pp. 108619, DOI: https://doi.org/10.2139/ssrn.4354778.

90. Skjemstad J.O., Janik L.J., Head M.J., McClure S.G., High-energy ultraviolet photooxidation: a novel technique for studying physically protected organic-matter in clay-sized and siltsized aggregates, J. Soil Sci., 1993, Vol. 44, pp. 485–499, DOI: https://doi.org/10.1111/j.1365-2389.1993.tb00471.x.

91. Solomon D., Lehmann J., Zech W., Land use effects on soil organic matterproperties of Chromic Luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates, Agric. Ecosyst. Environ., 2000, Vol. 78, pp. 203–213, DOI: https://doi.org/10.1016/S0167-8809(99)00126-7.

92. Trumbore S.E., Potential responses of soil organic carbon to global environmental change, Proc. Natl. Acad. Sci U.S.A., 1997, Vol. 94, pp. 8284– 8291, DOI: https://doi.org/10.1073/pnas.94.16.8284.

93. Trumbore S., Radiocarbon and soil carbon dynamics, Ann. Rev. Earth Planet. Sci., 2009, Vol. 37, pp. 47–66, DOI: https://doi.org/10.1146/annurev.earth.36.031207.124300.

94. Vidal A. et al., Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms, Soil Biol. Biochem., 2021, Vol. 160, pp. 108347, DOI: https://doi.org/10.1016/j.soilbio.2021.108347.

95. Virto I., Barré P., Chenu C., Microaggregation and organic matter storage at the silt-size scale, Geoderma, 2008, Vol. 146, pp. 326–335, DOI: https://doi.org/10.1016/j.geoderma.2008.05.021.

96. Virto I., Moni C., Swanston C., Chenu C., Turnover of intra- and extraaggregate organic matter at the silt-size scale, Geoderma, 2010, Vol. 156, pp. 1–10, DOI: https://doi.org/10.1016/j.geoderma.2009.12.028.

97. Von Lützow M., Kögel-Knabner I., Ekschmitt K. et al., SOM fractionation methods: relevance to functional pools and to stabilization mechanisms, Soil Biol. Biochem., 2007, Vol. 39, pp. 2183–2207, DOI: https://doi.org/10.1016/j.soilbio.2007.03.007.

98. Witzgall K., Vidal A., Schubert D.I. et al., Particulate organic matter as a functional soil component for persistent soil organic carbon, Nature Communications, 2021, Vol. 12, Art. No. 4115, DOI: https://doi.org/10.1038/s41467-021-24192-8.

99. Yamashita T., Flessa H., John B. et al., Organic matter in density fractions of water-stable aggregates in silty soils: Effect of land use, Soil Biol. Biochem., 2006, Vol. 38, pp. 3222–3234, DOI: https://doi.org/10.1016/j.soilbio.2006.04.013.

100. Yu W., Huang W., Weintraub-Leff S.R., Hall S.J., Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biol. Biochem., 2022, Vol. 172, Art. No. 108756, DOI: https://doi.org/10.1016/j.soilbio.2022.108756.

101. Zimmermann M., Leifeld J., Schmidt M.W.I. et al., Measured soil organic matter fractions can be related to pools in the RothC model, Eur. J. Soil Sci., 2007, Vol. 58, pp. 658–667, DOI: https://doi.org/10.1111/j.1365-2389.2006.00855.x.


Review

For citations:


Artemyeva Z.S., Kogut B.M. Labile and stable organic matter components in agricultural soils. Dokuchaev Soil Bulletin. 2025;(124):184-223. (In Russ.) https://doi.org/10.19047/0136-1694-2025-124-184-223

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)