Preview

Dokuchaev Soil Bulletin

Advanced search

Peculiarities of remote sensing diagnostics of agrochemical properties of arable soils

https://doi.org/10.19047/0136-1694-2025-126-68-89

Abstract

Agrochemical surveys of arable soils are laborious, costly and time-consuming. The introduction of modern remote sensing and digital technologies has great potential to overcome these disadvantages, but requires additional scientific research. The article presents the results of a comparison of the efficiency of using different types of remote sensing data for spatial modeling the main agrochemical properties of soils by the example of a test site in the Tver region. The spectral reflectance of the soil surface was determined in the field, its simultaneous measurement by an unmanned aerial vehicle (UAV) with a standard camera, and additionally the test plot was analyzed on Sentinel-2 satellite images. Regression analysis showed that the most accurate predictive models of soil agrochemical properties can be obtained from field spectrometry, lower quality models are obtained from UAV data, and the lowest quality models are obtained from satellite data. The main reason for this seems to be the spatial variation of soil agrochemical parameters and the generalized representation of their open surface on UAV data and satellite images.

About the Authors

E. Yu. Prudnikova
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



I. Yu. Savin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”; Institute of Environmental Engineering, RUDN University
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017; 8 Podolskoe shosse, Moscow 115093



G. V. Windecker
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



Yu. I. Vernyuk
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



N. Ya. Rebouh
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”; Institute of Environmental Engineering, RUDN University
Algeria

7 Bld. 2 Pyzhevskiy per., Moscow 119017; 8 Podolskoe shosse, Moscow 115093



N. V. Fomicheva
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



N. D. Kaviza
Institute of Environmental Engineering, RUDN University
Russian Federation

8 Podolskoe shosse, Moscow 115093



References

1. Grubina P.G., Savin I.Yu., Prudnikova E.Yu., The possibilities of using thermal infrared imaging data for detecting the main parameters of arable soil fertility, Dokuchaev Soil Bulletin, 2020, Vol. 105, pp. 146–172. DOI: https://doi.org/10.19047/0136-1694-2020-105-146-172.

2. Dokuchaev P.M., Zhogolev A.V., Kirillova N.P., Kozlov D.N., Konyushkova M.V., Lozbenev N.I., Martynenko I.A., Meshalkina Yu.L., Prudnikova E.Yu., Samsonova V.P., Tsifrovaya pochvennaya kartografiya (Digital soil mapping), Moscow: RUDN, 2017, 152 p.

3. Lozbenev N.I., Kozlov D.N., Fil' P.P., Khitrov N.B., Shilov P.M., Otsenka vliyaniya vida ugod'ya i pochvoobrazuyushchikh porod na soderzhanie i zapasy organicheskogo ugleroda v meliorirovannykh dernovopodzolistykh pochvakh, Tverskaya oblast' (Assessment of the influence of the type of site and soil-forming rocks on the content and stocks of organic carbon in ameliorated sod-podzolic soils, Tver region), Pochvovedenie, 2024, No. 12, pp. 1705–1735.

4. Metodicheskie ukazaniya po provedeniyu kompleksnogo monitoringa plodorodiya pochv zemel' sel'skokhozyaistvennogo naznacheniya (Methodological guidelines for comprehensive monitoring of soil fertility of agricultural lands), Moscow: FGNU “Rosinformagrotekh”, 2003, 240 p.

5. Prudnikova E.Yu., Savin I.Yu., Lebedeva M.P., Volkov D.S., Rogova O.B., Varlamov E.B., Abrosimov K.N., Transformatsiya poverkhnostnogo sloya pakhotnogo gorizonta pochv pod vliyaniem atmosfernykh osadkov (Transformation of the surface layer of the arable soil horizon under the influence of atmospheric precipitation), Pochvovedenie, 2001, No. 11, pp. 1407–1420.

6. Savin I.Yu., Stolbovoi V.S., Ivanov A.L., Prudnikova E.Yu., Zhogolev A.V., Voronin A.Ya., Tekhnologii sostavleniya i obnovleniya pochvennykh kart (Technologies of compilation and updating of soil maps), Moscow: Izdatel'stvo “Pero”, 2019, 328 p.

7. Savin I.Yu., Simakova M.S., Sputnikovye tekhnologii dlya inventarizatsii i monitoringa pochv v Rossii (Satellite technologies for soil inventory and monitoring in Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 104–115.

8. Ben-Dor E., Banin A., Near-infrared analysis as a rapid method to simultaneously evaluate several soilproperties, Soil Sci. Soc. Am. J., 1995, Vol. 59 (2), pp. 364–372.

9. Heil J., Jörges C., Stumpe B., Fine-scale mapping of soil organic matter in agricultural soils using uavs and machine learning, Remote Sens., 2022, Vol. 14, 3349.

10. Karnieli A., Development and implementation of spectral crust index over dune sands, International Journal of Remote Sensing, 1997, Vol. 18, pp. 1207–1220.

11. Mathieu R., Pouget M., Cervelle B., Escadafal R., Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment, Remote sensing of environment, 1998, Vol. 66, pp. 17–28.

12. Nyéki A., Daróczy B., Kerepesi C., Neményi M., Kovács A.J., Spatial variability of soil properties and its effect on maize yields within field – a case study in Hungary, Agronomy, 2022, Vol. 12 (2), 395, DOI: https://doi.org/10.3390/agronomy12020395.

13. Persson M., Estimating surface soil moisture from soil color using image analysis, Vadose Zone J., 2005, Vol. 4, pp. 1119–1122.

14. Prudnikova E., Savin I., Some peculiarities of arable soil organic matter detection using optical remote sensing data, Remote Sensing, 2021, Vol. 13 (12), 2313.

15. Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O., Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties, Geoderma, 2006, Vol. 131, pp. 59–75.

16. Wetterlind J., Stenberg B., Söderström M., Increased sample point density in farm soil mapping by local calibration of visible and near infrared prediction models, Geoderma, 2010, Vol. 156 (3–4), pp. 152–60.

17. Xiao J., Shen, Y., Tateishi R., Bayaer W., Development of topsoil grain size index for monitoring desertification in arid land using remote sensing, International Journal of Remote Sensing, 2006, Vol. 27, pp. 2411–2422.

18. Xu L., Zheng C.L., Wang Z.C., Nyongesah M.J., A digital camera as an alternative tool for estimating soil salinity and soil surface roughness, Geoderma, 2019, Vol. 341, pp. 68–75.


Review

For citations:


Prudnikova E.Yu., Savin I.Yu., Windecker G.V., Vernyuk Yu.I., Rebouh N.Ya., Fomicheva N.V., Kaviza N.D. Peculiarities of remote sensing diagnostics of agrochemical properties of arable soils. Dokuchaev Soil Bulletin. 2025;(126):68-89. (In Russ.) https://doi.org/10.19047/0136-1694-2025-126-68-89

Views: 70


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)