Contemporary approaches to studying the structure of soil organic matter
https://doi.org/10.19047/0136-1694-2025-124-70-90
Abstract
The aim of the work was to briefly outline the main approaches to studying the structure of soil organic matter, allowing to obtain the most complete description of this unique natural phenomenon. The main attention is paid to the approaches implemented in the Dokuchaev Soil Science Institute, examples of which are published in this special issue. Present methods can be divided into two large groups: research and routine. Research methods are methods and approaches that have been recently introduced or are being introduced into scientific practice. Routine ones are widely used to study soil organic matter. The advantage of the former is the prospect of obtaining new unique data, while the latter provide the ability to obtain well-reproducible, comparable results that are promising for multivariate analysis. The research methods considered in the work include ion cyclotron resonance mass spectrometry with Fourier transform and nuclear magnetic resonance methods on 13C and 1H nuclei with Fourier transform. The most promising methods for analyzing the structure of soil organic matter are described as routine methods: optical methods (spectroscopy in the ultraviolet and visible range and fluorescence spectroscopy), infrared spectroscopy and pyrolysis with gas chromatography and mass detection.
Keywords
About the Authors
V. A. KholodovRussian Federation
7 Bld. 2 Pyzhevskiy per., Moscow 119017
Yu. R/ Farkhodov
7 Bld. 2 Pyzhevskiy per., Moscow 119017
I. V. Danilin
7 Bld. 2 Pyzhevskiy per., Moscow 119017
References
1. Zherebker A.Y., Perminova I.V., Konstantinov A.I., Volikov A.B., Kostyukevich Y.I., Kononikhin A.S., Nikolaev E.N., Extraction of humic substances from fresh waters on solid-phase cartridges and their study by fourier transform ion cyclotron resonance mass spectrometry, Journal of Analytical Chemistry, 2016, Vol. 71(4). рр. 372–378.
2. Karavanova E.I., Dissolved organic matter: Fractional composition and sorbability by the soil solid phase (review of literature), Eurasian Soil Sci., 2013, Vol. 46(8), pp. 833–844, DOI: https://doi.org/10.1134/S1064229313080048.
3. Kovalevskij D.V., Permin A.B., Perminova I.V., Konnov D.V., Petrosjan V.S., Kolichestvennoe opredelenie obmennyh i skeletnyh protonov gumusovyh kislot s pomoshh'ju spektroskopii PMR, Vestnik Moskovskogo universiteta, serija 2 (Himija), 1990, Vol. 40, pp. 375–380.
4. Lebedev A.T., Mass-spektrometrija v organicheskoj himii (Mass spectrometry in organic chemistry), Moscow: Tehnosfera, 2015, 704 p.
5. Makarov A.A., Lovushka Orbitrap kak fundament dlja sozdanija novyh metodov i tehnologij (Orbitrap as a foundation for creating new methods and technologies), Analitika, 2021, No. 4, pp. 260–268.
6. Orlov D.S., Sadovnikova L.K., Suhanova N.I., Himija pochv (Soil chemistry), Moscow: Vyssh. shk., 2005, 558 p.
7. Perminova I.V., Analiz, klassifikacija i prognoz svojstv guminovyh kislot. Diss. … dok. khim. n. (Analysis, classification and prediction of the properties of humic acids: Dr. Chem. Sci. thesis), Moscow: MGU, 2000, 359 p.
8. FarkhodovYu.R., Yaroslavtseva N.V., Kholodov V.A., Methodological aspects of the determination of fatty acids in soil by thermochemolysis, Eurasian Soil Science, 2021, Vol. 54(8), pp. 1176–1182, DOI: https://doi.org/10.1134/S1064229321080068.
9. Kholodov V.A., Konstantinov A.I., Kudryavtsev A.V., Perminova I.V., Structure of humic acids in zonal soils from 13С NMR data, Eurasian Soil Science, 2011, Vol. 44(9), pp. 976–983.
10. Kholodov V.A., Yaroslavtseva N.V., Ziganshina A.R., Danchenko N.N., Danilin I.V., Farkhodov Yu.R., Zhidkin A.P., Water-extractable organic matter of the soils with different degrees of erosion and sedimentation in a small catchment in the central forest-steppe of the central russian upland: soil sediments on the dry valley bottom, Eurasian Soil Science, 2024, Vol. 57(7), pp. 1097–1109, DOI: https://doi.org/10.1134/S1064229324600325.
11. Kholodov V.A., Farkhodov Y.R., Yaroslavtseva N.V., Yashin M.A., Aydiev A.Yu., Lazarev V.I., Iliyn B.S., Ivanov A.L., Kulikova N.A., Thermolabile and thermostable organic matter of chernozems under different land uses, Eurasian Soil Sc., 2020, No. 53, pp. 1066–1078, DOI: https://doi.org/10.1134/S1064229320080086.
12. Chukov S.N., Lodygin E.D., Abakumov E.V., Application of 13C NMR spectroscopy to the study of soil organic matter: a review of publications, Eurasian Soil Science, 2018, Vol. 51(8), pp. 889–900.
13. Adair E., Afonso C., Bell Nicholle G.A., Davies A.N., Delsuc M.-A., Godfrey R., Goodacre R., Hawkes J.A., Hertkorn N., Jones D., Lameiras P., Guennec A.L., Lubben A., Nilsson M., Paša-Tolić L., Richards J., Rodgers R.P., Rüger C.P., Schmitt-Kopplin P., Schoenmakers P.J., Sidebottom P., Staerk D., Summerfield S., Uhrín D., van Delft P., van der Hooft Justin J.J., van Zelst Fleur H.M., Zherebker A., High resolution techniques: general discussion, Faraday Discussions, 2019, Vol. 218, pp. 247–267.
14. Barra I., Haefele S.M., Sakrabani R., Kebede F., Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advancese – A review, Trends in Analytical Chemistry, 2021, Vol. 135, pp. 116166, DOI: https://doi.org/10.1016/j.trac.2020.116166.
15. Ceccanti B., Masciandaro G., Macci C., Pyrolysis-gas chromatography to evaluate the organic matter quality of a mulched soil, Soil & Tillage Research, 2007, Vol. 97, pp. 71–78.
16. Challinor J.M., The development and applications of thermally assisted hydrolysis and methylation reactions, Journal of Analytical and Applied Pyrolysis, 2001, Vol. 61, pp. 3–34.
17. Clabel J.L.H., Nicolodelli G., Senesi G.S., Montes C.R., Felicio Perruci N.A., Bezzon V.D.N., Balogh D.T., Milori D.M.B.P., Organo-mineral associations in a Spodosol from northern Brazil, Geoderma Regional, 2020, Vol. 22, e00303, DOI: https://doi.org/10.1016/j.geodrs.2020.e00303.
18. Dangal S.R.S., Sanderman J., Wills S., Ramirez-Lopez L., Accurate and Precise Prediction of Soil Properties from a Large Mid-Infrared Spectral Library, Soil Systems, 2019, Vol. 3(11), DOI: https://doi.org/10.3390/soilsystems3010011.
19. Derenne S., Quenea K., Analytical pyrolysis as a tool to probe soil organic matter, Journal of Analytical and Applied Pyrolysis, 2015, Vol. 111, pp. 108– 120.
20. Drozd J., Gonet S.S., Senesi N., Weber J. (Eds.), Еcosystems and in environmental processes. IHSS Polish.
21. Filep T., Zacháry D., Balog K., Assessment of soil quality of arable soils in Hungary using DRIFT spectroscopy and chemometrics, Vibrational Spectroscopy, 2016, Vol. 84, pp. 16–23, DOI: https://doi.org/10.1016/j.vibspec.2016.02.005/.
22. Fomina P.S., Proskurnin M.A., Mizaikoff B., Volkov D.S., Infrared Spectroscopy in Aqueous Solutions: Capabilities and Challenges, Critical Reviews in Analytical Chemistry, 2022, pp. 1–18, DOI: https://doi.org/10.1080/10408347.2022.2041390.
23. Francioso O., Montecchio D., Gioacchini P., Cavani L., Ciavatta C., Trubetskoj O., Trubetskaya O., Structural differences of Chernozem soil humic acids SEC–PAGE fractions revealed by thermal (TG–DTA) and spectroscopic (DRIFT) analyses, Geoderma, 2009, Vol. 152, pp. 264–268, DOI: https://doi.org/10.1016/j.geoderma.2009.06.011.
24. Hertkorn N., Harir M., Koch B.P., Michalke B., Schmitt-Kopplin P., Highfield NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter, Biogeosciences, 2013, Vol. 10(3), pp. 1583–1624.
25. Hertkorn N., Permin A., Perminova I., Kovalevskii D., Yudov M., Petrosyan V., Kettrup A., Comparative Analysis of Partial Structures of a Peat Humic and Fulvic Acid Using One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy, Journal of Environment Quality, 2017, Vol. 31(2), pp. 375.
26. Khreptugova A.N., Konstantinov A.I., Mikhnevich T.A., Matsubara F., Gustafsson Ö., Semiletov I.P., Perminova I.V., Onboard Large-Scale Isolation and Characterization of Three Reference DOM Materials from Siberian Arctic Shelf Marine Water, ACS Omega, 2025, Vol. 10(7), pp. 6406–6418, DOI: https://doi.org/10.1021/acsomega.4c06041.
27. Lado M., Sayegh J., Gadjnay A.G., Ben-Hur M., Borisover M., Heatinduced changes in soil water-extractable organic matter characterized using fluorescence and FTIR spectroscopies coupled with dimensionality reduction methods, Geoderma, 2023, Vol. 430, pp. 116347, DOI: https://doi.org/10.1016/j.geoderma.2023.116347.
28. Laub M., Demyan M.S., Nkwain Y.F., Blagodatsky S., Kätterer T., Piepho H.-P., Cadisch G., DRIFTS band areas as measured pool size proxy to reduce parameter uncertainty in soil organic matter models, Biogeosciences, 2020, Vol. 17, pp. 1393–1413, DOI: https://doi.org/10.5194/bg-17-1393-2020.
29. Leinweber P., Schulten H.R., Advances in analytical pyrolysis of soil organic matter, Journal of Analytical and Applied Pyrolysis, 1999, Vol. 49, pp. 359–383.
30. Margenot A.J., Calderon F.J., Bowles T.M., Parikh S.J., Jackson L.E., Soil Organic Matter Functional Group Composition in Relation to Organic Carbon, Nitrogen, and Phosphorus Fractions in Organically Managed Tomato Fields, Soil Science Society of America Journal, 2015, Vol. 79, pp. 772–782, DOI: https://doi.org/10.2136/sssaj2015.02.0070.
31. Moldoveanu S.C., Pyrolysis of Organic Molecules: Applications to Health and Environmental Issues, Amsterdam: Elsevier Science, 2019, 723 p.
32. Murphy K.R., Stedmon C.A., Graeber D., Bro R., Fluorescence spectroscopy and multi-way techniques. PARAFAC, Anal. Methods, 2013, Vol. 5(23), pp. 6557–6566.
33. Olk D.C., Bloom P.R., Perdue E.M., McKnight D.M., Chen Y., Farenhorst A., Senesi N., Chin Y.-P., Schmitt-Kopplin P., Hertkorn N., Harir M., Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters, Journal of Environment Quality, 2019, Vol. 48(2), pp. 217.
34. OpenFluor, Lablicate GmbH. URL: https://openfluor.lablicate.com/home.
35. Peng Y., Ben-Dor E., Biswas A., Chabrillat S., Demattê J.A.M., Ge Y., Gholizadeh A., Gomez C., Guerrero C., Herrick J., Maynard J.J., Mouazen A.M., Ma Y., McBratney A.B., Minasny B., Ramirez-Lopez L., Robertson A.H.J., Viscarra Rossel R.A., Shi Z., Stenberg B., Wadoux A. M.J.- C., Winowiecki L.A., Zhang G., Spectroscopic solutions for generating new global soil information, The Innovation, 2025, Vol. 6(5), 100839, DOI: https://doi.org/10.1016/j.xinn.2025.100839.
36. Perminova I.V., Size exclusion chromatography of humic substances: Complexities of data interpretation at tributable to nonsize exclusion effects, Soil Sci., 1999, Vol. 164, pp. 834–840.
37. Piccolo A., New insights on the conformational structure of humic substances as revealed by size exclusion chromatography, In: Drozd J., Gonet S. S., Senesi N., Weber J. (Eds.) The Role of Humic Substances in the Ecosystems and in Environmental Processes, IHSS-Polish Society of Humic Substances, Wroclaw, 1997, pp. 19–35.
38. Piccolo A., Nardi S., Concher G., Macromolecular changes of humic substances induced by interaction with organic acids, European J. Soil Sci., 1996, Vol. 47, pp. 319–328.
39. Pucher M., Wünsch U., Weigelhofer G., Murphy K., Hein T., Graeber D., StaRdom: Versatile software for analyzing spectroscopic data of dissolved organic matter in R, Water (Switzerland), 2019, Vol. 11, DOI: https://doi.org/10.3390/w11112366.
40. Simpson M.J., Simpson A.J., NMR of soil organic matter, Encyclopedia of Spectroscopy and Spectrometry (Third Edition), 2017, pp. 170–174.
41. Viscarra Rossel R.A., Behrens T., Ben-Dor E., Chabrillat S., Demattê J.A.M., Ge Y., Gomez C., Guerrero C., Peng Y., Ramirez-Lopez L., Shi Z., Stenberg B., Webster R., Winowiecki L., Shen Z., Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century, European Journal of Soil Science, 2022, Vol. 73, e13271, DOI: https://doi.org/10.1111/ejss.13271.
42. Wadoux A.M.J.-C., Román-Dobarco M., McBratney A.B., Perspectives on data-driven soil research, European Journal of Soil Science, 2021, Vol. 72, pp. 1675–1689, DOI: https://doi.org/10.1111/ejss.13071.
43. Wünsch U.J., Murphy K.R., Stedmon C.A., The One-Sample PARAFAC Approach Reveals Molecular Size Distributions of Fluorescent Components in Dissolved Organic Matter, Environmental Science and Technology, 2017, Vol. 51(20), pp. 11900–11908.
Review
For citations:
Kholodov V.A., Farkhodov Yu.R., Danilin I.V. Contemporary approaches to studying the structure of soil organic matter. Dokuchaev Soil Bulletin. 2025;(124):70-90. (In Russ.) https://doi.org/10.19047/0136-1694-2025-124-70-90