Физические механизмы стабилизации углерода почвами (обзор)
https://doi.org/10.19047/0136-1694-2025-124-309-366
Аннотация
Стабилизация почвенного органического вещества (ПОВ) является ключевым условием сохранения плодородия и сокращения эмиссии углекислого газа из почвы в атмосферу в процессе сельскохозяйственной деятельности. Актуальным научно-практическим направлением исследований является разработка технологий возделывания, обеспечивающих оптимальные физические свойства почвы для роста и развития растений, а также для жизнедеятельности почвенного микробиома. Это требует понимания физических механизмов регуляции баланса углерода (С) почв и процессов трансформации органических веществ. Цель данной статьи – сделать обзор существующих представлений о физических факторах и механизмах стабилизации С в почвах, а также описать физические процессы, регулирующие цикл С почв. Взаимосвязь процессов трансформации ПОВ и физических факторов почвообразования показана через призму современного понимания концепции структурной организации почв, так как ПОВ играет ключевую роль в формировании почвенной структуры и определяет ее качество. Проведен анализ развития методов и методологии физики почв, и рассмотрены наиболее перспективные для понимания цикла С направления исследований. Особое внимание в обзоре уделено влиянию физических свойств почв на рост и развитие растений как основного источника поступающих органических веществ и необходимого условия для секвестрации С почвами. Также рассмотрены существующие ограничения для использования физических параметров почв в математическом моделировании процессов стабилизации С.
Ключевые слова
Об авторах
А. В. ЮдинаРоссия
Юдина Анна Викторовна, к.б.н., зав. лаб., с.н.с. лаб. физики и гидрологии почв
119017, Москва, Пыжевский пер, 7, стр. 2
IstinaResearcherID (IRID): 8510728
ResearcherID: R-9840-2016
Scopus Author ID: 57193404063
В. В. Клюева
Россия
Клюева Валерия Валерьевна
119017, Москва, Пыжевский пер, 7, стр. 2
М. В. Тимофеева
Россия
Тимофеева Мария Валерьевна
119017, Москва, Пыжевский пер, 7, стр. 2
М. В. Семенов
Россия
Семенов Михаил Вячеславович
119017, Москва, Пыжевский пер, 7, стр. 2
Д. Р. Бардашев
Россия
Бардашев Даниил Романович
119017, Москва, Пыжевский пер, 7, стр. 2
М. А. Кочнева
Россия
Кочнева Мария Александровна
119017, Москва, Пыжевский пер, 7, стр. 2
Д. Е. Митичкин
Россия
Митичкин Дмитрий Евгеньевич
119017, Москва, Пыжевский пер, 7, стр. 2
Д. С. Фомин
Россия
Фомин Дмитрий Сергеевич
119017, Москва, Пыжевский пер, 7, стр. 2
К. А. Романенко
Россия
Романенко Константин Александрович
119017, Москва, Пыжевский пер, 7, стр. 2
Список литературы
1. Абросимов К.Н., Герке К. М., Фомин Д.С., Романенко К.А., Корост Д.В. Томография в почвоведении: от первых опытов к современным методам (обзор) // Почвоведение. 2021. Т. 55. №. 9. С. 1097–1112. DOI: https://doi.org/10.31857/S0032180X21090021.
2. Артемьева З.С., Федотов Г.Н. Состав функциональных пулов легкоразлагаемого органического вещества автоморфных зонального ряда почв центра Русской равнины // Вестник Московского университета. Сер. 17. Почвоведение. 2013. № 4. С. 3–10.
3. Бондарев А.Г., Сапожников П.М., Уткаева В.Ф., Щепотьев В.Н. Изменение физических свойств и плодородия почв при уплотнении движителями сельскохозяйственной техники // Научные труды Всероссийского института механизации сельского хозяйства (см. в книгах). 1988. Т. 118. С. 46–57.
4. Бухонов А.В., Худяков О.И., Борисов А.В. Изменения структурногоагрегатного состояния почв нижнего Поволжья за последние 3500 лет в связи с динамикой климата // Почвоведение. 2018. № 6. С. 710–719. DOI: https://doi.org/10.7868/S0032180X18060072.
5. Герке К.М., Скворцова Е.Б., Корост Д.В. Томографический метод исследования порового пространства почв: состояние проблемы и изучение некоторых почв России // Почвоведение. 2012. № 7. С. 781–781.
6. Дымов А.А., Милановский Е.Ю., Холодов В.А. Состав и гидрофобные свойства органического вещества денсиметрических фракций почв Приполярного Урала // Почвоведение. 2015. No 11. С. 1335–1335. DOI: https://doi.org/10.7868/S0032180X15110052.
7. Клюева В.В. Цифровая реометрия в современных почвенных исследованиях (обзор) // Бюллетень Почвенного института имени В.В. Докучаева. 2024. Вып. 121. С. 281–321. DOI: https://doi.org/10.19047/0136-1694-2024-121-281-321.
8. Клюева В.В., Хайдапова Д.Д. Возможности использования реологических параметров почв в качестве физических показателей трансформации их структурного состояния // Бюллетень Почвенного института имени В.В. Докучаева. 2020. Вып. 103. С. 108–148. DOI: https://doi.org/10.19047/0136-1694-2020-103-108-148.
9. Ларионова А.А., Золотарева Б.Н., Квиткина А.К., Евдокимов И.В., Быховец С.С., Стулин А.Ф., Кузяков Я.В., Кудеяров В.Н. Оценка устойчивости почвенного органического вещества на основе различных видов фракционирования и изотопных методов 13С // Почвоведение. 2015. № 2. С. 175–187. DOI: https://doi.org/10.7868/S0032180X15020070.
10. Медведев В.В. Оптимизация агрофизических свойств черноземов. М.: Агропромиздат, 1988. 159 с.
11. Овсепян Л.А., Курганова И.Н., Русаков А.В., Кузяков Я.В. Изменение денситометрического фракционного состава органического вещества почв лесостепной зоны в процессе постагрогенной эволюции // Почвоведение. 2020. № 1. С. 56–68. DOI: https://doi.org/10.31857/S0032180X20010128.
12. Семенов В.М., Лебедева Т.Н., Паутова Н.Б., Хромычкина Д.П., Ковалев И.В., Ковалева Н.О. Взаимосвязь размера агрегатов, содержания дисперсного органического вещества и разложения растительных остатков в почве // Почвоведение. 2020. № 4. С. 430–443. DOI: https://doi.org/10.31857/S0032180X20040139.
13. Семенов В.М., Лебедева Т.Н., Овсепян Л.А., Семенов М.В., Курганова И.Н. Пулы и фракции органического углерода в почве: структура, функции и методы определения // Почвы и окружающая среда. 2023. Т. 6. № 1. С. 4–19. DOI: https://doi.org/10.31251/pos.v6i1.199.
14. Семенов В.М., Лебедева Т.Н., Зинякова Н.Б., Соколов Д.А. Размеры и соотношения пулов органического углерода в серой лесной почве при многолетнем применении минеральных и органических удобрений // Почвоведение. 2023. № 4. С. 482–501. DOI: https://doi.org/10.31857/S0032180X22601426.
15. Семенов В.М., Лебедева Т.Н., Паутова Н.Б. Дисперсное органическое вещество в необрабатываемых и пахотных почвах // Почвоведение. 2019. № 4. С. 440–450. DOI: https://doi.org/10.1134/S0032180X19040130.
16. Тимофеева М.В., Абросимов К.Н., Юдина А.В., Фомин Д.С., Клюева В.В. Зимография: особенности постановки метода визуализации активности ферментов в почвах // Бюллетень Почвенного института имени ВВ Докучаева. 2022. №. 113. С. 58–89. DOI: https://doi.org/10.19047/0136-1694-2022-113-58-89.
17. Холодов В.А., Рогова О.Б., Лебедева М.П., Варламов Е.Б., Волков Д.С., Зиганшина А.Р., Ярославцева Н.В. Органическое вещество и минеральная матрица почв: современные подходы, определения терминов и методы изучения (обзор) // Бюллетень Почвенного института имени В.В. Докучаева. 2023. № 117. С. 52–100. DOI: https://doi.org/10.19047/0136-1694-2023-117-52-100.
18. Шаймухаметов М.Ш., Титова Н.А., Травникова Л.С., Лабенец Е.М. Применение физических методов фракционирования для характеристики органического вещества почв // Почвоведение. 1984. № 8. С. 131–141.
19. Шеин Е.В. Курс физики почв. М., 2005. 432 с.
20. Юдина А.В., Фомин Д.С. Энергия диспергации суглинистых почв до элементарных почвенных частиц с помощью ультразвука // Бюллетень Почвенного института имени В.В. Докучаева. 2023. № 115. С. 87–106. DOI: https://doi.org/10.19047/0136-1694-2023-115-87-106.
21. Юдина А.В., Фомин Д.С., Котельникова А.Д., Милановский Е.Ю. От понятия элементарной почвенной частицы к гранулометрическому и микроагрегатному анализам (обзор) // Почвоведение. 2018. № 11. С. 1340–1362. DOI: https://doi.org/10.1134/S0032180X18110096.
22. Anderson R.V., Ingham R.E., Trofymow J.A., Coleman D.C. Soil mesofauna distribution in relation to habitat types in a shortgrass prairie. 1984.
23. Angers D.A., Caron J. Plant induced changes in soil structure: processes and feedbacks // Biogeochemistry. 1998. Vol. 42. P. 55–72. DOI: https://doi.org/10.1023/A:1005944025343.
24. Bachmann J., Guggenberger G., Baumgartl T., Ellerbrock R.H., Urbanek E., Goebel M.O., Kaiser K., Horn R., Fischer W.R. Physical carbon‐ sequestration mechanisms under special consideration of soil wettability // Journal of Plant Nutrition and Soil Science. 2008. Vol. 171. No. 1. P. 14–26. DOI: https://doi.org/10.1002/jpln.200700054.
25. Badri D.V., Vivanco J.M. Regulation and function of root exudates // Plant Cell Environ. 2009. Vol. 32. No. 6. P. 666–681. DOI: https://doi.org/10.1111/j.1365-3040.2009.01926.x.
26. Bais H.P., Weir T.L., Perry L.G., Gilroy S. Vivanco J.M. The role of root exudates in rhizosphere interactions with plants and other organisms // Annu. Rev. Plant Biol. 2006. Vol. 57. No. 1. P. 233–266. DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105159.
27. Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M. The rhizosphere microbiome and plant health // Trends Plant Sci. 2012. Vol. 17. No. 8. P. 478– 486.
28. Beylich A., Oberholzer H.R., Schrader S., Höper H., Wilke B.M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils // Soil Till. Res. 2010. Vol. 109. No. 2. P. 133–143. DOI: https://doi.org/10.1016/j.still.2010.05.010.
29. Breland T.A., Hansen S. Nitrogen mineralization and microbial biomass as affected by soil compaction // Soil Biol. Biochem. 1996. Vol. 28. No. 4–5. P. 655–663. DOI: https://doi.org/10.1016/0038-0717(95)00154-9.
30. Büks F. The recovery rate of free particulate organic matter is strongly reduced by conventional density fractionation of soil samples // Biogeosciences Discussions. 2022. Vol. 2022. P. 1–9. DOI: https://doi.org/10.5194/bg-20-1529-2023.
31. Carter M.R., Angers D.A., Kunelius H.T. Soil structural form and stability, and organic matter under cool-season perennial grasses // Soil Sci. Soc. Am. J. 1994. Vol. 58. No. 4. P. 1194–1199. DOI: https://doi.org/10.2136/sssaj1994.03615995005800040027x.
32. Castellano M.J., Mueller K.E., Olk D.C., Sawyer J.E., Six J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept // Global Change Biol. 2015. Vol. 21. No. 9. P. 3200–3209. DOI: https://doi.org/10.1111/gcb.12982.
33. Cerli C., Celi L., Kalbitz K., Guggenberger G., Kaiser K. Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level // Geoderma. 2012. Vol. 170. P. 403–416. DOI: https://doi.org/10.1016/j.geoderma.2011.10.009.
34. Chabbi A., Kögel-Knabner I., Rumpel C. Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile // Soil Biology and Biochemistry. 2009. Vol. 41. No. 2. P. 256–261. DOI: https://doi.org/10.1016/j.soilbio.2008.10.033.
35. Christensen B.T. Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure // Evaluation of soil organic matter models: using existing long-term datasets. Berlin: Springer Berlin Heidelberg, 1996. P. 143–159.
36. Christensen B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover // Eur. J. Soil Sci. 2001. Vol. 52. No. 3. P. 345–353. DOI: https://doi.org/10.1046/j.1365-2389.2001.00417.x.
37. Cotrufo M.F., Ranalli M.G., Haddix M.L., Six J., Lugato E. Soil carbon storage informed by particulate and mineral-associated organic matter // Nature Geosci. 2019. Vol. 12. No. 12. P. 989–994. DOI: https://doi.org/10.1038/s41561-019-0484-6.
38. Dascalu A.V., Owusu-Yeboah Z., Lungu I., Aniculaesi M. The influence of dispercing agents on soil particle size analysis // Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura. 2022. Vol. 68. No. 1. P. 125–140.
39. De Gryze S., Six J., Merckx R. Quantifying water‐ stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study // European Journal of Soil Science. 2006. Vol. 57. No. 5. P. 693–707. DOI: https://doi.org/10.1111/j.1365-2389.2005.00760.x.
40. De Neve S., Hofman G. Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues // Biol. Fertil. Soils. 2000. Vol. 30. P. 544–549. DOI: https://doi.org/10.1007/s003740050034.
41. Denef K., Zotarelli L., Boddey R. M., Six J. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols // Soil Biology and Biochemistry. 2007. Vol. 39. No. 5. P. 1165–1172. DOI: https://doi.org/10.1016/j.soilbio.2006.12.024.
42. Dessaux Y., Grandclément C., Faure D. Engineering the Rhizosphere // Trends Plant Sci. 2016. Vol. 21. No. 3. P. 266–278. DOI: https://doi.org/10.1016/j.tplants.2016.01.002.
43. Deurer M., Müller K., Kim I., Huh K.Y., Young I., Jun G.I., Clothier B.E. Can minor compaction increase soil carbon sequestration? A case study in a soil under a wheel-track in an orchard // Geoderma. 2012. Vol. 183. P. 74–79. DOI: https://doi.org/10.1016/j.geoderma.2012.02.013.
44. Dexter A.R., Richard G., Arrouays D., Czyż E.A., Jolivet C., Duval O. Complexed organic matter controls soil physical properties // Geoderma. 2008. Vol. 144. No. 3–4. P. 620–627. DOI: https://doi.org/10.1016/j.geoderma.2008.01.022.
45. Dexter A.R. Mechanics of root growth // Plant and Soil. 1987. Vol. 98. P. 303–312. DOI: https://doi.org/10.1007/BF02378351.
46. Dorioz J.M., Robert M., Chenu C. The role of roots, fungi and bacteria on clay particle organization. An experimental approach // Soil Structure/Soil Biota Interrelationships. Elsevier, 1993. P. 179–194.
47. Dorodnikov M., Blagodatskaya E., Blagodatsky S., Fangmeier A., Kuzyakov Y. Stimulation of r-vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size // FEMS Microbiology Ecology. 2009. Vol. 69. No. 1. P. 43–52. DOI: https://doi.org/10.1111/j.1574-6941.2009.00697.x.
48. Duddigan S., Shaw L.J., Alexander P.D., Collins C.D. A comparison of physical soil organic matter fractionation methods for amended soils // Appl. Environ. Soil Sci. 2019. Vol. 2019. No. 1. P. 3831241. DOI: https://doi.org/10.1155/2019/3831241.
49. Emerson W.W. The structure of soil crumbs // J. Soil Sci. 1959. Vol. 10. No. 2. P. 235–244. DOI: https://doi.org/10.1111/j.1365-2389.1959.tb02346.x.
50. Encyclopedia of agrophysics / J. Gliński, J. Horabik, J. Lipiec (Eds.). Dordrecht: Springer, 2011. 1028 p.
51. Fatichi S., Or D., Walko R., Vereecken H., Young M. H., Ghezzehei T. A., Hengl T., Kollet S., Agam N., Avissar R. Soil structure is an important omission in Earth System Models // Nature communications. 2020. Vol. 11. No. 1. P. 522. https://doi.org/10.1038/s41467-020-14411-z.
52. Gattinger A., Ruser R., Schloter M., Munch J.C. Microbial community structure varies in different soil zones of a potato field // J. Plant Nutr. Soil Sci. 2002. Vol. 165. No. 4. P. 421–428. DOI: https://doi.org/10.1002/1522-2624(200208)165:43.0.CO;2-N.
53. Georgiou K., Angers D., Champiny R.E., Cotrufo M.F., Craig M.E., Doetterl S., Grandy A.S., Lavallee J.M., Lin Y., Lugato E., Poeplau C., Rocci K.S., Schweizer S.A., Six J., Wieder W.R. Soil carbon saturation: what do we really know? // Global Change Biol. 2025. Vol. 31. No. 5. P. e70197. DOI: https://doi.org/10.1111/gcb.70197.
54. Gerke K.M., Korostilev E.V., Romanenko K.A., Karsanina M.V. Going submicron in the precise analysis of soil structure: A FIB-SEM imaging study at nanoscale // Geoderma. 2021. Vol. 383. P. 114739. DOI: https://doi.org/10.1016/j.geoderma.2020.114739.
55. Gill R., Burke I.C., Milchunas D.G., Lauenroth W.K. Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern Colorado // Ecosyst. 1999. Vol. 2. No. 3. P. 226–236. DOI: https://doi.org/10.1007/s100219900070.
56. Gregory A.S., Ritz K., McGrath S.P., Quinton J.N., Goulding K.W.T, Jones R.J.A., Harris J.A., Bol R., Wallace P, Pilgrim E.S., Whitmore A.P. A review of the impacts of degradation threats on soil properties in the UK // Soil Use Manag. 2015. Vol. 31. P. 1–15. DOI: https://doi.org/10.1111/sum.12212.
57. Hassink J., Whitmore A.P. A model of the physical protection of organic matter in soils // Soil Sci. Soc. Am. J. Vol. 61. No. 1. P. 131–139. DOI: https://doi.org/10.2136/sssaj1997.03615995006100010020x.
58. Helliwell J.R., Sturrock C.J., Miller A.J., Whalley W.R., Mooney S.J. The role of plant species and soil condition in the structural development of the rhizosphere // Plant Cell Environ. 2019. Vol. 42. No. 6. P. 1974–1986. DOI: https://doi.org/10.1111/pce.13529.
59. Holátko J., Brtnický M., Kučerík J., Kotianová M., Elbl J., Kintl A., Kynický J., Benada O., Datta R., Jansa J. Glomalin – Truths, myths, and the future of this elusive soil glycoprotein // Soil Biology and Biochemistry. 2021. Vol. 153. P. 108116. DOI: https://doi.org/10.1016/j.soilbio.2020.108116.
60. Holthusen D., Batistão A.C., Reichert J.M. Amplitude sweep tests to comprehensively characterize soil micromechanics: brittle and elastic interparticle bonds and their interference with major soil aggregation factors organic matter and water content // Rheol. Acta. 2020. Vol. 59. No. 8. P. 545– 563. DOI: https://doi.org/10.1007/s00397-020-01219-3.
61. Horn R., Holthusen D., Dörner J., Mordhorst A., Fleige H. Scaledependent soil strengthening processes – What do we need to know and where to head for a sustainable environment? // Soil Tillage Res. 2019. Vol. 195. P. 104388. DOI: https://doi.org/10.1016/j.still.2019.104388.
62. Horn R., Taubner H., Wuttke M., Baumgartl T. Soil physical properties related to soil structure // Soil Tillage Res. 1994. Vol. 30. No. 2–4. P. 187– 216. DOI: https://doi.org/10.1016/0167-1987(94)90005-1.
63. Jagadamma S., Steinweg J.M., Mayes M.A., Wang G., Post W.M. Decomposition of added and native organic carbon from physically separated fractions of diverse soils // Biol. Fetil. Soils. 2014. Vol. 50. P. 613–621. DOI: https://doi.org/10.1007/s00374-013-0879-2.
64. Jarvis N., Coucheney E., Lewan E., Klöffel T., Meurer K. H. Keller T., Larsbo M. Interactions between soil structure dynamics, hydrological processes, and organic matter cycling: A new soil‐ crop model // Eur. J. Soil Sci. 2024. Vol. 75. No. 2. P. e13455. DOI: https://doi.org/10.1111/ejss.13455.
65. Jastrow J.D., Amonette J.E., Bailey V.L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration // Clim. Change. 2007. Vol. 80. No. 1. P. 5–23 DOI: https://doi.org/10.1007/s10584-006-9178-3.
66. Jha A., Bonetti S., Smith A.P., Souza R., Calabrese S. Linking soil structure, hydraulic properties, and organic carbon dynamics: A holistic framework to study the impact of climate change and land management // J. Geophys. Res. Biogeosci. 2023. Vol. 128. No. 7. P. e2023JG007389. DOI: https://doi.org/10.1029/2023JG007389.
67. Jin K., Shen J., Ashton R.W., Dodd I.C., Parry M.A.J., Whalley W.R. How do roots elongate in a structured soil? // J. Exp. Bot. 2013. Vol. 64. No. 15. P. 4761–4777. DOI: https://doi.org/10.1093/jxb/ert286.
68. Jin K., White P.J., Whalley W.R., Shen J., Shi L. Shaping an optimal soil by root – soil interaction // Trends Plant Sci. 2017. Vol. 22. No 10. P. 823– 829.
69. Jones D.L., Nguyen C., Finlay R.D. Carbon flow in the rhizosphere: carbon trading at the soil – root interface // Plant and soil. 2009. Vol. 321. No. 1–2. P. 5–33. DOI: https://doi.org/10.1007/s11104-009-9925-0.
70. Just C., Poeplau C., Don A., van Wesemael B., Kögel-Knabner I., Wiesmeier M. A simple approach to isolate slow and fast cycling organic carbon fractions in central European soils – Importance of dispersion method // Front. Soil Sci. 2021. Vol. 1. P. 692583. DOI: https://doi.org/10.3389/fsoil.2021.692583.
71. Killham K., Amato M., Ladd J.N. Effect of substrate location in soil and soil pore-water regime on carbon turnover // Soil Biol. Biochem. 1993. Vol. 25. No. 1. P. 57–62. DOI: https://doi.org/10.1016/0038-0717(93)90241-34.
72. Kim H.M., Anderson S.H., Motavalli P.P., Gantzer C.J. Compaction effects on soil macropore geometry and related parameters for an arable field // Geoderma. 2010. Vol. 160. No. 2. P. 244–251. DOI: https://doi.org/10.1016/j.geoderma.2010.09.030.
73. Koebernick N., Daly K.R., Keyes S.D., Bengough A.G., Brown L.K., Cooper L.J., George T.S., Hallett P.D., Naveed M., Raffan A., Roose T. Imaging microstructure of the barley rhizosphere: particle packing and root hair influences // New Phytol. 2019. Vol. 221. No. 4. P. 1878–1889. DOI: https://doi.org/10.1111/nph.15516.
74. Kramer C., Gleixner G. Variable use of plant-and soil-derived carbon by microorganisms in agricultural soils // Soil Biol. Biochem. 2006. Vol. 38. No. 11. P. 3267–3278. DOI: https://doi.org/10.1016/j.soilbio.2006.04.006.
75. Kravchenko A., Otten W., Garnier P., Pot V., Baveye P.C. Soil aggregates as biogeochemical reactors: Not a way forward in the research on soil– atmosphere exchange of greenhouse gases // Glob. Change Biol. 2019. Vol. 25. No. 7. P. 2205–2208. DOI: https://doi.org/10.1111/gcb.14640.
76. Kravchenko A.N., Guber A.K. Soil pores and their contributions to soil carbon processes // Geoderma. 2017. Vol. 287. P. 31–39. DOI: https://doi.org/10.1016/j.geoderma.2016.06.027.
77. Kravchenko A.N., Negassa W.C., Guber A.K., Rivers M.L. Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics // Sci. Rep. 2015. Vol. 5. No. 1. P. 16261. DOI: https://doi.org/10.1038/srep16261.
78. Kravchenko A.N., Guber A.K., Razavi B.S., Koestel J., Quigley M.Y., Robertson G.P., Kuzyakov Y. Microbial spatial footprint as a driver of soil carbon stabilization // Nat. Commun. 2019. Vol. 10. No. 1. P. 3121. DOI: https://doi.org/10.1038/s41467-019-11057-4.
79. Kravchenko A., Guber A., Gunina A., Dippold M., Kuzyakov, Y. Pore‐ scale view of microbial turnover: Combining 14C imaging, μCT and zymography after adding soluble carbon to soil pores of specific sizes // Eur. J. Soil Sci. 2021. Vol. 72. No. 2. P. 593–607. DOI: https://doi.org/10.1111/ejss.13001.
80. Krull E.S., Baldock J.A., Skjemstad J.O. Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover // Funct. Plant Biol. 2003. Vol. 30. No. 2. P. 207–222. DOI: https://doi.org/10.1071/FP02085.
81. Kuzyakov Y., Mason-Jones K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions // Soil Biology and Biochemistry. 2018. Vol. 127. P. 305–317. DOI: https://doi.org/10.1016/j.soilbio.2018.09.032.
82. Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology // Eur. J. Soil Sci. 1996. Vol. 47. No. 4. P. 425–437. DOI: https://doi.org/10.1111/j.1365-2389.1996.tb01843.x.
83. Lehmann J., Kleber M. The contentious nature of soil organic matter // Nature. 2015. Vol. 528. No. 7580. P. 60–68. DOI: https://doi.org/10.1038/nature16069.
84. Lehmann A., Zheng W., Rillig M.C. Soil biota contributions to soil aggregation // Nat. Ecol. Evol. 2017. Vol. 1. No. 12. P. 1828–1835. DOI: https://doi.org/10.1038/s41559-017-0344-y.
85. Leue M., Gerke H.H., Godow S.C. Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay‐ illuvial horizons // Journal of Plant Nutrition and Soil Science. 2015. Vol. 178. No. 2. P. 250– 260. DOI: https://doi.org/10.1002/jpln.201400209.
86. Lilley J.M., Kirkegaard J.A. Benefits of increased soil exploration by wheat roots // Field Crops Res. 2011. Vol. 122. No. 2. P. 118–130. DOI: https://doi.org/10.1016/j.fcr.2011.03.010.
87. Lin H. Three principles of soil change and pedogenesis in time and space // Soil Science Society of America Journal. 2011. Vol. 75. No. 6. P. 2049–2070. DOI: https://doi.org/10.2136/sssaj2011.0130.
88. Lombard N., Prestat E., van Elsas J.D., Simonet P. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics // FEMS microbiology ecology. 2011. Vol. 78. No. 1. P. 31–49. DOI: https://doi.org/10.1111/j.1574-6941.2011.01140.x.
89. Lucas M., Schlüter S., Vogel H.J., Vetterlein D. Roots compact the surrounding soil depending on the structures they encounter // Sci. Rep. 2019. Vol. 9. No. 1. P. 16236. DOI: https://doi.org/10.1038/s41598-019-52665-w.
90. Lützow M., Kögel‐ Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review // Eur. J. Soil Sci. 2006. Vol. 57. No. 4. P. 426–445. DOI: http://dx.doi.org/10.1111/j.1365-2389.2006.00809.x.
91. Malamoud K., McBratney A.B., Minasny B., Field D.J. Modelling how carbon affects soil structure // Geoderma. 2009. Vol. 149. No. 1–2. P. 19–26. DOI: https://doi.org/10.1016/j.geoderma.2008.10.018.
92. Manzoni S., Cotrufo F. Mechanisms of soil organic carbon and nitrogen stabilization in mineral associated organic matter – Insights from modelling in phase space // EGUsphere. 2024. Vol. 2024. P. 1–35. DOI: https://doi.org/10.5194/egusphere-2024-1092.
93. Materechera S.A., Dexter A.R., Alston A.M. Formation of aggregates by plant roots in homogenized soils // Plant Soil. 1992. Vol. 142. P. 69–79. DOI: https://doi.org/10.1007/BF00010176.
94. Meurer K.H.E., Chenu C., Coucheney E., Herrmann A.M., Keller T., Kätterer T., Svennson D.N., Jarvis N. Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter //Biogeosciences Discussions. 2020. P. 1–34. DOI: https://doi.org/10.5194/bg17-5025-2020.
95. Mueller C.W., Kölbl A., Hoeschen C., Hillion F., Heister K., Herrmann A.M., Kögel-Knabner I. Submicron scale imaging of soil organic matter dynamics using NanoSIMS–from single particles to intact aggregates // Org. Geochem. 2012. Vol. 42. No. 12. P. 1476–1488. DOI: https://doi.org/10.1016/j.orggeochem.2011.06.003.
96. Mueller C.W. Baumert V., Carminati A., Germon A., Holz M., KögelKnabner I., Peth S., Schlüter S., Uteau D., Vetterlein D., Teixeira P., Vidal A. From rhizosphere to detritusphere – Soil structure formation driven by plant roots and the interactions with soil biota // Soil Biol. Biochem. 2024. Vol. 193. P. 109396. DOI: https://doi.org/10.1016/j.soilbio.2024.109396.
97. Nawaz M.F., Bourrie G., Trolard F. Soil compaction impact and modelling. A review // Agron. Sustain. Dev. 2013. Vol. 33. P. 291–309. DOI: https://doi.org/10.1007/s13593-011-0071-8.
98. Negassa W.C., Guber A., Kravchenk A., Marsh T., Hildebrandt B., Rivers M. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria // PLoS one. 2015. Vol. 10. No. 4. P. e0123999. DOI: https://doi.org/10.1371/journal.pone.0123999.
99. Novara A., Armstrong A., Gristina L., Semple K.T., Quinton J. Effects of soil compaction, rain exposure and their interaction on soil carbon dioxide emission // Earth Surf. Process. Landf. 2012. Vol. 37. No. 9. P. 994–999. DOI: https://doi.org/10.1002/esp.3224.
100. Pankhurst C.E., Pierret A., Hawke B.G., Kirby J.M. Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia // Plant and Soil. 2002. Vol. 238. P. 11– 20. DOI: https://doi.org/10.1023/A:1014289632453.
101. Philippot L., Raaijmakers J.M., Lemanceau P., Van Der Putten W.H. Going back to the roots: the microbial ecology of the rhizosphere // Nat. Rev. Microbiol. 2013. Vol. 11. No. 11. P. 789–799. DOI: https://doi.org/10.1038/nrmicro3109.
102. Prieto I., Roumet C., Cardinael R., Dupraz C., Jourdan C., Kim J.H., Maeght J.L., Mao Z., Pierret A., Portillo N., Roupsard O., Thammahacksa C., Stokes A. Root functional parameters along a land‐ use gradient: evidence of a community‐ level economics spectrum // J. Ecol. 2015. Vol. 103. No. 2. P. 361–373. DOI: https://doi.org/10.1111/1365-2745.12351.
103. Puget P., Chenu C., Balesdent J. Total and young organic matter distributions in aggregates of silty cultivated soils // Eur. J. Soil Sci. 1995. Vol. 46. No. 3. P. 449–459. DOI: https://doi.org/10.1111/j.1365-2389.1995.tb01341.x.
104. Quigley M.Y., Kravchenko A.N. Inputs of root-derived carbon into soil and its losses are associated with pore-size distributions // Geoderma. 2022. Vol. 410. P. 115667. DOI: https://doi.org/10.1016/j.geoderma.2021.115667.
105. Rab M.A., Haling R.E., Aarons S.R., Hannah M., Young I.M., Gibson D. Evaluation of X-ray computed tomography for quantifying macroporosity of loamy pasture soils // Geoderma. 2014. Vol. 213. P. 460–470. DOI: https://doi.org/10.1016/j.geoderma.2013.08.037.
106. Ranjard L., Richaume A. Quantitative and qualitative microscale distribution of bacteria in soil // Research in microbiology. 2001. Vol. 152. No. 8. P. 707–716. DOI: https://doi.org/10.1016/S0923-2508(01)01251-7.
107. Rabot E., Wiesmeier M., Schlüter S., Vogel H.J. Soil structure as an indicator of soil functions: A review // Geoderma. 2018. Vol. 314. P. 122–137. DOI: https://doi.org/10.1016/j.geoderma.2017.11.009.
108. Regelink I.C., Stoof C.R., Rousseva S., Weng L., Lair G.J., Kram P., Nikolaidis N.P., Kercheva M., Banwart S., Comans R.N. Linkages between aggregate formation, porosity and soil chemical properties // Geoderma. 2015. Vol. 247. P. 24–37. DOI: https://doi.org/10.1016/j.geoderma.2015.01.022.
109. Reid J.B., Goss M.J. Interactions between soil drying due to plant water use and decrease in aggregate stability caused by maize roots // J. Soil Sci. 1982. Vol. 33. No. 1. P. 47–53. DOI: https://doi.org/10.1111/j.1365-2389.1982.tb01746.x.
110. Richard G., Cousin I., Sillon J.F., Bruand A., Guérif J. Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties // Eur. J. Soil Sci. 2001. Vol. 52. No. 1. P. 49–58. DOI: https://doi.org/10.1046/j.1365-2389.2001.00357.x.
111. Rillig, M.C., Mummey D.L. Mycorrhizas and soil structure // New Phytol. 2006. Vol. 171. No. 1. P. 41–53. DOI: https://doi.org/10.1111/j.1469-8137.2006.01750.x.
112. Rousk J., Bååth E. Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique // Soil Biol. Biochem. 2007. Vol. 39. No. 8. P. 2173–2177. DOI: https://doi.org/10.1016/j.soilbio.2007.03.023.
113. Ruamps L.S., Nunan N., Pouteau V., Leloup J., Raynaud X., Roy V., Chenu C. Regulation of soil organic C mineralisation at the pore scale // FEMS Microbiol. Ecol. 2013. Vol. 86. No. 1. P. 26–35. DOI: https://doi.org/10.1111/1574-6941.12078.
114. Sasse J., Martinoia E., Northen T. Feed your friends: do plant exudates shape the root microbiome? // Trends in Plant Science. 2018. Vol. 23. No. 1. P. 25–41. DOI: https://doi.org/10.1016/j.tplants.2017.09.003.
115. Schutter M., Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates // Soil Biology and Biochemistry. 2001. Vol. 33. No. 11. P. 1481–1491. DOI: https://doi.org/10.1016/S0038-0717(01)00057-8.
116. Schweizer S.A. Perspectives from the Fritz‐ Scheffer Awardee 2021: Soil organic matter storage and functions determined by patchy and piled‐ up arrangements at the microscale // J. Plant Nutr. Soil Sci. 2022. Vol. 185. No. 6. P. 694–706. DOI: https://doi.org/10.1002/jpln.202200217.
117. Segoli M., De Gryze S., Dou F., Lee J., Post W.M., Denef K., Six J. AggModel: A soil organic matter model with measurable pools for use in incubation studies // Ecol. Modell. 2013. Vol. 263. P. 1–9. DOI: https://doi.org/10.1016/j.ecolmodel.2013.04.010.
118. Sher Y., Baker N.R., Herman D., Fossum C., Hale L., Zhang X., Nuccio E., Saha M., Zhou J., Pett-Ridge J., Firestone M. Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential // Soil Biol. Biochem. 2020. Vol. 43. P. 107742. DOI: https://doi.org/10.1016/j.soilbio.2020.107742.
119. Smith A.P., Marín-Spiotta E., De Graaff M.A., Balser T.C. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change // Soil Biology and Biochemistry. 2014. Vol. 77. P. 292–303. DOI: https://doi.org/10.1016/j.soilbio.2014.05.030.
120. Six J., Guggenberger G., Paustian K., Haumaier L., Elliott E.T., Zech W. Sources and composition of soil organic matter fractions between and within soil aggregates // Eur. J. Soil Sci. 2001. Vol. 52. No. 4. P. 607–618. DOI: https://doi.org/10.1046/j.1365-2389.2001.00406.x.
121. Six J., Bossuyt H., Degryze S., Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics // Soil Tillage Res. 2004. Vol. 79. No. 1. P. 7–31. DOI: https://doi.org/10.1016/j.still.2004.03.008.
122. Six J., Elliott E.T., Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture // Soil Biol. Biochem. 2000. Vol. 32. No. 14. P. 2099–2103. DOI: https://doi.org/10.1016/S0038-0717(00)00179-6.
123. Spohn M., Carminati A., Kuzyakov Y. Soil zymography – a novel in situ method for mapping distribution of enzyme activity in soil // Soil Biol. Biochem. 2013. Vol. 58. P. 275–280. DOI: https://doi.org/10.1016/j.soilbio.2012.12.004.
124. Spohn M., Kuzyakov Y. Distribution of microbial-and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – coupling soil zymography with 14C imaging // Soil Biol. Biochem. 2013. Vol. 67. P. 106–113. DOI: https://doi.org/10.1016/j.soilbio.2013.08.015.
125. Stamati F.E., Nikolaidis Ν.P., Banwart S., Blum W.E. A coupled carbon, aggregation, and structure turnover (CAST) model for topsoils // Geoderma. 2013. Vol. 211. P. 51–64. DOI: https://doi.org/10.1016/j.geoderma.2013.06.014.
126. Stewart J.B., Moran C.J., Wood J.T. Macropore sheath: quantification of plant root and soil macropore association // Plant and Soil. 1999. Vol. 211. No. 1. P. 59–67. DOI: https://doi.org/10.1023/A:1004405422847.
127. Strickland M.S., Rousk J. Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications // Soil Biol. Biochem. 2010. Vol. 42. No. 9. P. 1385–1395. DOI: https://doi.org/10.1016/j.soilbio.2010.05.007.
128. Strong D.T., Sale P.W.G., Helyar K.R. The influence of the soil matrix on nitrogen mineralisation and nitrification. II. The pore system as a framework for mapping the organisation of the soil matrix // Soil Research. 1998. Vol. 36. No. 5. P. 855–872. DOI: https://doi.org/10.1071/S97103.
129. Strong D.T., Wever H.D., Merckx R., Recous S. Spatial location of carbon decomposition in the soil pore system // Eur. J. Soil Sci. 2004. Vol. 55. No. 4. P. 739–750. DOI: https://doi.org/10.1111/j.1365-2389.2004.00639.x.
130. Tan X., Chang S.X. Soil compaction and forest litter amendment affect carbon and net nitrogen mineralization in a boreal forest soil // Soil Till. Res. 2007. Vol. 93. No. 1. P. 77–86. DOI: https://doi.org/10.1016/j.still.2006.03.017.
131. Tan X., Chang S.X., Kabzems R. Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study // For. Ecol. Manag. 2005. Vol. 217. No. 2–3. P. 158–170. DOI: https://doi.org/10.1016/j.foreco.2005.05.061.
132. Tisdall J.M., Oades J.M. Organic matter and water‐ stable aggregates in soils // J. Soil Sci. 1982. Vol. 33. No. 2. P. 141–163. DOI: https://doi.org/10.1111/j.1365-2389.1982.tb01755.x.
133. Tomescu A.M.F. Megaphylls, microphylls and the evolution of leaf development // Trends Plant Sci. 2009. Vol. 14. No. 1. P. 5–12. DOI: https://doi.org/10.1016/j.tplants.2008.
134. Totsche K.U., Amelung W., Gerzabek M.H., Guggenberger G., Klumpp E., Knief C., Lehndorff E., Mikutta R., Peth S., Prechtel A., Ray N., KogelKnabner I. Microaggregates in soils // J. Plant Nutr. Soil Sci. 2018. Vol. 181. No. 1. P. 104–136. DOI: https://doi.org/10.1002/jpln.201600451.
135. Treves D.S., Xia B., Zhou J., Tiedje J.M. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil // Microbial Ecology. 2003. Vol. 45. P. 20–28. DOI: https://doi.org/10.1007/s00248-002-1044-x.
136. Ugawa S., Inagaki Y., Karibu F., Tateno R. Effects of soil compaction by a forestry machine and slash dispersal on soil N mineralization in Cryptomeria japonica plantations under high precipitation // New For. 2020. Vol. 51. P. 887–907. DOI: https://doi.org/10.1007/s11056-019-09768-z.
137. Valentine T.A., Hallett P.D., Binnie K., Young M.W., Squire G.R., Hawes C., Bengough A.G. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils // Ann. Bot. 2012. Vol. 110. No. 2. P. 259–270. DOI: https://doi.org/10.1093/aob/mcs118.
138. Verchot L.V., Dutaur L., Shepherd K.D., Albrecht A. Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils // Geoderma. 2011. Vol. 161. No. 3–4. P. 182–193. DOI: http://dx.doi.org/10.1016/j.geoderma.2010.12.017.
139. Visser S. Role of the soil invertebrates in determining the composition of soil microbial communities. 1985.
140. Vogel H.J., Balseiro‐ Romero M., Kravchenko A., Otten W., Pot V., Schlüter S., Weller U., Baveye P.C. A holistic perspective on soil architecture is needed as a key to soil functions // Eur. J. Soil Sci. 2022. Vol. 73. No. 1. P. e13152. DOI: https://doi.org/10.1111/ejss.13152.
141. Wang B., Brewer P.E., Shugart H.H., Lerdau M.T., Allison S.D. Soil aggregates as biogeochemical reactors and implications for soil–atmosphere exchange of greenhouse gases – A concept // Global Change Biol. 2019. Vol. 25. No. 2. P. 373–385. DOI: https://doi.org/10.1111/gcb.14515.
142. Waring B.G., Averill C., Hawkes C.V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta‐ analysis and theoretical models // Ecol. Let. 2013. Vol. 16. No. 7. P. 887–894. DOI: https://doi.org/10.1111/ele.12125.
143. White R.G., Kirkegaard J.A. The distribution and abundance of wheat roots in a dense, structured subsoil – implications for water uptake // Plant Cell Environ. 2010. Vol. 33. No. 2. P. 133–148. DOI: https://doi.org/10.1111/j.1365-3040.2009.02059.x.
144. Yudina A., Kuzyakov Y. Dual nature of soil structure: The unity of aggregates and pores // Geoderma. 2023. Vol. 434. P. 116478. DOI: https://doi.org/10.1016/j.geoderma.2023.116478.
145. Yudina A., Kuzyakov Y. Saving the face of soil aggregates // Global Change Biol. 2019. Vol. 25. No. 11. DOI: https://doi.org/10.1111/gcb.14779.
146. Yudina A., Ovchinnikova O., Cheptsov V., Fomin D. Localization of C cycle enzymes in arable and forest phaeozems within levels of soil microstructure // Microorganisms. 2023. Vol. 11. No. 5. P. 1343. DOI: https://doi.org/10.3390/microorganisms11051343.
147. Young I.M., Crawford J.W., Rappoldt C. New methods and models for characterising structural heterogeneity of soil // Soil and Tillage Research. 2001. Vol. 61. No. 1–2. P. 33–45. DOI: https://doi.org/10.1016/S0167-1987(01)00188-X.
148. Young I.M., Ritz K. Can there be a contemporary ecological dimension to soil biology without a habitat? // Soil Biology and Biochemistry. 1998. Vol. 30. No. 10–11. P. 1229–1232. DOI: https://doi.org/10.1016/S0038-0717(97)00263-0.
149. Zech S., Schweizer S.A., Bucka F.B., Ray N., Kögel‐ Knabner I., Prechtel A. Explicit spatial modeling at the pore scale unravels the interplay of soil organic carbon storage and structure dynamics // Global Change Biol. 2022. Vol. 28. No. 15. P. 4589–4604. DOI: https://doi.org/10.1111/gcb.16230.
150. Zhang Y., King A.E., Hamilton E., Cotrufo M.F. Representing cropping systems with the MEMS 2 ecosystem model // Agron. J. 2024. Vol. 116. No. 5. P. 2328–2345. DOI: https://doi.org/10.1002/agj2.21611.
151. Zhang Y., King A.E., Hamilton E., Cotrufo M.F. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model // Biogeosciences. 2021. Vol. 18. No. 10. P. 3147–3171. DOI: https://doi.org/10.5194/bg-18-3147-2021.
152. Zhou J., Xia B.C., Treves D.S., Wu L.Y., Marsh T.L., O’Neill R.V., Palumbo A.V., Tiedje J.M. Spatial and resource factors influencing high microbial diversity in soil // Applied and environmental microbiology. 2002. Vol. 68. No. 1. P. 326–334. DOI: https://doi.org/10.1128/AEM.68.1.326-334.2002.
Рецензия
Для цитирования:
Юдина А.В., Клюева В.В., Тимофеева М.В., Семенов М.В., Бардашев Д.Р., Кочнева М.А., Митичкин Д.Е., Фомин Д.С., Романенко К.А. Физические механизмы стабилизации углерода почвами (обзор). Бюллетень Почвенного института имени В.В. Докучаева. 2025;(124):309-366. https://doi.org/10.19047/0136-1694-2025-124-309-366
For citation:
Yudina A.V., Klyueva V.V., Timofeeva M.V., Semenov M.V., Bardashov D.R., Kochneva M.A., Mitichkin D.E., Fomin D.S., Romanenko K.A. Physical mechanisms of carbon stabilization in soils (a review). Dokuchaev Soil Bulletin. 2025;(124):309-366. (In Russ.) https://doi.org/10.19047/0136-1694-2025-124-309-366