Preview

Dokuchaev Soil Bulletin

Advanced search

Physical mechanisms of carbon stabilization in soils (a review)

https://doi.org/10.19047/0136-1694-2025-124-309-366

Abstract

Stabilization of soil organic matter (SOM) is a key factor for maintaining fertility and reducing carbon dioxide emissions from the soil into the atmosphere during agricultural activities. A relevant scientific and practical area of research is the development of cultivation technologies that provide optimal physical properties of the soil for the plant growth and development, as well as for the vital activity of the soil microbiome. Understanding the physical mechanisms that regulate the carbon (C) balance of soils and the transformation of organic matter is therefore essential. This paper is aimed to provide an overview of existing concepts concerning the physical factors and mechanisms of C stabilization in soils, and to describe the physical processes regulating the C cycle in soils. The relationship between the SOM transformation processes and the physical factors of soil formation is shown through the modern understanding of the concept of the structural organization of soils, since SOM plays a key role in the formation of the soil structure and determines its quality. The development of methods and methodology of soil physics is analyzed and the most promising research areas for understanding the C cycle are considered. The review pays special attention to the influence of physical properties of soils on the growth and development of plants, as the main source of incoming organic matter and a necessary condition for sequestration of C by soils. The existing limitations in using of soil physical parameters in mathematical modeling of C stabilization processes are also considered.

About the Authors

A. V. Yudina
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



V. V. Klyueva
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



M. V. Timofeeva
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



M. V. Semenov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



D. R. Bardashov
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



M. A. Kochneva
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



D. E. Mitichkin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



D. S. Fomin
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



K. A. Romanenko
Federal Research Centre “V.V. Dokuchaev Soil Science Institute”
Russian Federation

7 Bld. 2 Pyzhevskiy per., Moscow 119017



References

1. Abrosimov K.N., Fomin D.S., Romanenko K.A., Korost D.V., Gerke K.M. Tomography in soil science: from the first experiments to modern methods (a review), Eurasian Soil Science, 2021, Vol. 54, No. 9, pp. 1385–1399, DOI: https://doi.org/10.1134/S1064229321090027.

2. Artem’eva Z.S., Fedotov G.N., Soil organic matter pools in zonal soils of Russian plate’s center, Moscow University Soil Science Bulletin, 2013, No. 4, pp. 3–10.

3. Bondarev A.G., Sapozhnikov P.M., Utkaeva V.F., Shchepotyev V.N., Changes in physical properties and fertility of soils during compaction by agricultural machinery propellers, Scientific works of the All-Russian Institute of Agricultural Mechanization, 1988, Vol. 118, pp. 46–57.

4. Bukhonov A.V., Khudyakov O.I., Borisov A.V., Changes in the structural state of soils in the Lower Volga Region during the past 3500 years as related to climate fluctuations, Eurasian Soil Science, 2018, Vol. 51, No. 6, pp. 664– 673, DOI: https://doi.org/10.1134/S1064229318060054.

5. Gerke K.M., Skvortsova E.B., Korost D.V., Tomographic methods of studying soil pore space: current perspectives and results for some Russian soils, Eurasian Soil Science, 2012, Vol. 45, No. 7, pp. 700–709, DOI: https://doi.org/10.1134/S1064229312070034.

6. Dymov A.A., Milanovskii E.Y., Kholodov V.A., Composition and hydrophobic properties of organic matter in the densimetric fractions of soils from the Subpolar Urals, Eurasian Soil Science, 2015, Vol. 48, No. 11, pp. 1212–1221, DOI: https://doi.org/10.1134/S1064229315110058.

7. Klyueva V.V., The rheometry approach in modern soil studies: a review, Dokuchaev Soil Bulletin, 2024, Vol. 121, pp. 281–321. DOI: https://doi.org/10.19047/0136-1694-2024-121-281-321.

8. Klyueva V.V., Khaydapova D.D., Possibilities of using rheological parameters as physical indicators of soil structural changes, Dokuchaev Soil Bulletin, 2020, Vol. 103, pp. 108–148, DOI: https://doi.org/10.19047/0136-1694-2020-103-108-148.

9. Larionova A.A., Zolotareva B.N., Kvitkina A.K., Evdokimov I.V., Bykhovets S.S., Kudeyarov V.N., Stulin A.F., Kuzyakov Y.V., Assessing the stability of soil organic matter by fractionation and 13c isotope techniques, Eurasian Soil Science, 2015, Vol. 48, No. 2, pp. 157–168, DOI: https://doi.org/10.1134/S1064229315020076.

10. Medvedev V.V., Optimization of agrophysical properties of chernozems, Moscow: Agropromizdat, 1988, 159 p.

11. Ovsepyan L.A., Kurganova I.N., Lopes de Gerenyu V.O., Kuzyakov Y.V., Rusakov A.V., Changes in the fractional composition of organic matter in the soils of the forest-steppe zone during their postagrogenic evolution, Eurasian Soil Science, 2020, Vol. 53, No. 1, pp. 50–61, DOI: https://doi.org/10.1134/S1064229320010123.

12. Semenov V.M., Lebedeva T.N., Pautova N.B., Khromychkina D.P., Kovalev I.V., Kovaleva N.O., Relationships between the size of aggregates, particulate organic matter content, and decomposition of plant residues in soil, Eurasian Soil Science, 2020, Vol. 53, No. 4, pp. 454–466, DOI: https://doi.org/10.1134/S1064229320040134.

13. Semenov V.M., Lebedeva T.N., Lopes de Gerenuy V.O., Ovsepyan L.A., Semenov M.V., Kurganova I.N., Pools and fractions of organic carbon in soil: structure, functions and methods of determination, The Journal of Soils and Environment, Vol. 6(1), e199, DOI: https://doi.org/10.31251/pos.v6i1.199.

14. Semenov V.M., Lebedeva T.N., Zinyakova N.B., Sokolov D.A., Sizes and ratios of organic carbon pools in gray forest soil under long-term application of mineral and organic fertilizers, Eurasian Soil Science, 2023, Vol. 56, No. 4, pp. 470–487, DOI: https://doi.org/10.1134/s1064229322602517.

15. Semenov V.M., Lebedeva T.N., Pautova N.B., Particulate organic matter in noncultivated and arable soils, Eurasian Soil Science, 2019, Vol. 52, No. 4, pp. 396–404, DOI: https://doi.org/10.1134/S1064229319040136.

16. Timofeeva M.V., Abrosimov K.N., Yudina A.V., Fomin D.S., Klyueva V.V., Zymography: developing of the enzyme soil activity visualization method, Dokuchaev Soil Bulletin, 2022, Vol. 113, pp. 58–89, DOI: https://doi.org/10.19047/0136-1694-2022-113-58-89.

17. Kholodov V.A., Rogova O.B., Lebedeva M.P., Varlamov E.B., Volkov D.S., Ziganshina A.R., Yaroslavtseva N.V., Organic matter and mineral matrix of soils: modern approaches, definitions of terms and methods of study (review), Dokuchaev Soil Bulletin, 2023, Vol. 117, pp. 52–100, DOI: https://doi.org/10.19047/0136-1694-2023-117-52-100.

18. Shaimukhametov M.Sh., Titova N.A., Travnikova L.S., Labenets E.M., Application of physical methods of fractionation for characterization of soil organic matter, Pochvovedenie, 1984, No. 8, pp. 131–141.

19. Shein E.V., Course of Soil Physics, Мoscow, 2005, 432 p.

20. Yudina A.V., Fomin D.S., Energy of dispersing of loamy soils to elementary particles using ultrasound, Dokuchaev Soil Bulletin, 2023, Vol. 115, pp. 87–106, DOI: https://doi.org/10.19047/0136-1694-2023-115-87-106.

21. Yudina A.V., Fomin D.S., Kotelnikova A.D., Milanovskii E.Y., From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: a review, Eurasian Soil Science, 2018, Vol. 51, No. 11, pp. 1326–1347.

22. Anderson R.V., Ingham R.E., Trofymow J.A., Coleman D.C., Soil mesofauna distribution in relation to habitat types in a shortgrass prairie, 1984.

23. Angers D.A., Caron J., Plant induced changes in soil structure: processes and feedbacks, Biogeochemistry, 1998, Vol. 42, pp. 55–72, DOI: https://doi.org/10.1023/A:1005944025343.

24. Bachmann J., Guggenberger G., Baumgartl T., Ellerbrock R.H., Urbanek E., Goebel M.O., Kaiser K., Horn R., Fischer W.R., Physical carbon‐ sequestration mechanisms under special consideration of soil wettability, Journal of Plant Nutrition and Soil Science, 2008, Vol. 171, No. 1, pp. 14–26, DOI: https://doi.org/10.1002/jpln.200700054.

25. Badri D.V., Vivanco J.M., Regulation and function of root exudates, Plant Cell Environ., 2009, Vol. 32, No. 6, pp. 666–681, DOI: https://doi.org/10.1111/j.1365-3040.2009.01926.x.

26. Bais H.P., Weir T.L., Perry L.G., Gilroy S. Vivanco J.M., The role of root exudates in rhizosphere interactions with plants and other organisms, Annu. Rev. Plant Biol., 2006, Vol. 57, No. 1, pp. 233–266, DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105159.

27. Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M., The rhizosphere microbiome and plant health, Trends Plant Sci., 2012, Vol. 17, No. 8, pp. 478–486.

28. Beylich A., Oberholzer H.R., Schrader S., Höper H., Wilke B.M., Evaluation of soil compaction effects on soil biota and soil biological processes in soils, Soil Till. Res., 2010, Vol. 109, No. 2, pp. 133–143, DOI: https://doi.org/10.1016/j.still.2010.05.010.

29. Breland T.A., Hansen S., Nitrogen mineralization and microbial biomass as affected by soil compaction, Soil Biol. Biochem., 1996, Vol. 28, No. 4–5, pp. 655–663, DOI: https://doi.org/10.1016/0038-0717(95)00154-9.

30. Büks F., The recovery rate of free particulate organic matter is strongly reduced by conventional density fractionation of soil samples, Biogeosciences Discussions, 2022, Vol. 2022, pp. 1–9, DOI: https://doi.org/10.5194/bg-20- 1529-2023.

31. Carter M.R., Angers D.A., Kunelius H.T., Soil structural form and stability, and organic matter under cool-season perennial grasses, Soil Sci. Soc. Am. J., 1994, Vol. 58, No. 4, pp. 1194–1199, DOI: https://doi.org/10.2136/sssaj1994.03615995005800040027x.

32. Castellano M.J., Mueller K.E., Olk D.C., Sawyer J.E., Six J., Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept, Global Change Biol., 2015, Vol. 21, No. 9, pp. 3200–3209, DOI: https://doi.org/10.1111/gcb.12982.

33. Cerli C., Celi L., Kalbitz K., Guggenberger G., Kaiser K., Separation of light and heavy organic matter fractions in soil – Testing for proper density cut-off and dispersion level, Geoderma, 2012, Vol. 170, pp. 403–416, DOI: https://doi.org/10.1016/j.geoderma.2011.10.009.

34. Chabbi A., Kögel-Knabner I., Rumpel C., Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile, Soil Biology and Biochemistry, 2009, Vol. 41, No. 2, pp. 256–261, DOI: https://doi.org/10.1016/j.soilbio.2008.10.033.

35. Christensen B.T., Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure, In: Evaluation of soil organic matter models: using existing longterm datasets, Berlin: Springer Berlin Heidelberg, 1996, pp. 143–159.

36. Christensen B.T., Physical fractionation of soil and structural and functional complexity in organic matter turnover, Eur. J. Soil Sci., 2001, Vol. 52, No. 3, pp. 345–353, DOI: https://doi.org/10.1046/j.1365-2389.2001.00417.x.

37. Cotrufo M.F., Ranalli M.G., Haddix M.L., Six J., Lugato E., Soil carbon storage informed by particulate and mineral-associated organic matter, Nature Geosci., 2019, Vol. 12, No. 12, pp. 989–994, DOI: https://doi.org/10.1038/s41561-019-0484-6.

38. Dascalu A.V., Owusu-Yeboah Z., Lungu I., Aniculaesi M., The influence of dispercing agents on soil particle size analysis, Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 2022, Vol. 68, No. 1, pp. 125–140.

39. De Gryze S., Six J., Merckx R., Quantifying water‐ stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study, European Journal of Soil Science, 2006, Vol. 57, No. 5, pp. 693–707, DOI: https://doi.org/10.1111/j.1365-2389.2005.00760.x.

40. De Neve S., Hofman G., Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues, Biol. Fertil. Soils., 2000, Vol. 30, pp. 544–549, DOI: https://doi.org/10.1007/s003740050034.

41. Denef K., Zotarelli L., Boddey R. M., Six J., Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols, Soil Biology and Biochemistry, 2007, Vol. 39, No. 5, pp. 1165–1172, DOI: https://doi.org/10.1016/j.soilbio.2006.12.024.

42. Dessaux Y., Grandclément C., Faure D., Engineering the Rhizosphere, Trends Plant Sci., 2016, Vol. 21, No. 3, pp. 266–278, DOI: https://doi.org/10.1016/j.tplants.2016.01.002.

43. Deurer M., Müller K., Kim I., Huh K.Y., Young I., Jun G.I., Clothier B.E., Can minor compaction increase soil carbon sequestration? A case study in a soil under a wheel-track in an orchard, Geoderma, 2012, Vol. 183, pp. 74–79, DOI: https://doi.org/10.1016/j.geoderma.2012.02.013.

44. Dexter A.R., Richard G., Arrouays D., Czyż E.A., Jolivet C., Duval O., Complexed organic matter controls soil physical properties, Geoderma, 2008, Vol. 144, No. 3–4, pp. 620–627, DOI: https://doi.org/10.1016/j.geoderma.2008.01.022.

45. Dexter A.R., Mechanics of root growth, Plant and Soil, 1987, Vol. 98, pp. 303–312, DOI: https://doi.org/10.1007/BF02378351.

46. Dorioz J.M., Robert M., Chenu C., The role of roots, fungi and bacteria on clay particle organization. An experimental approach, In: Soil Structure/Soil Biota Interrelationships, Elsevier, 1993, pp. 179–194.

47. Dorodnikov M., Blagodatskaya E., Blagodatsky S., Fangmeier A., Kuzyakov Y., Stimulation of r-vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size, FEMS Microbiology Ecology, 2009, Vol. 69, No. 1, pp. 43–52, DOI: https://doi.org/10.1111/j.1574-6941.2009.00697.x.

48. Duddigan S., Shaw L.J., Alexander P.D., Collins C.D., A comparison of physical soil organic matter fractionation methods for amended soils, Appl. Environ. Soil Sci., 2019, Vol. 2019, No. 1, pp. 3831241, DOI: https://doi.org/10.1155/2019/3831241.

49. Emerson W.W., The structure of soil crumbs, J. Soil Sci., 1959, Vol. 10, No. 2, pp. 235–244, DOI: https://doi.org/10.1111/j.1365-2389.1959.tb02346.x.

50. Gliński J., Horabik J., Lipiec J. (Eds.), Encyclopedia of agrophysics, Dordrecht: Springer, 2011, 1028 p.

51. Fatichi S., Or D., Walko R., Vereecken H., Young M. H., Ghezzehei T. A., Hengl T., Kollet S., Agam N., Avissar R., Soil structure is an important omission in Earth System Models, Nature communications, 2020, Vol. 11, No. 1, pp. 522, DOI: https://doi.org/10.1038/s41467-020-14411-z.

52. Gattinger A., Ruser R., Schloter M., Munch J.C., Microbial community structure varies in different soil zones of a potato field, J. Plant Nutr. Soil Sci., 2002, Vol. 165, No. 4, pp. 421–428, DOI: https://doi.org/10.1002/1522-2624(200208)165:43.0.CO;2-N.

53. Georgiou K., Angers D., Champiny R.E., Cotrufo M.F., Craig M.E., Doetterl S., Grandy A.S., Lavallee J.M., Lin Y., Lugato E., Poeplau C., Rocci K.S., Schweizer S.A., Six J., Wieder W.R., Soil carbon saturation: what do we really know? Global Change Biol., 2025, Vol. 31, No. 5, pp. e70197, DOI: https://doi.org/10.1111/gcb.70197.

54. Gerke K.M., Korostilev E.V., Romanenko K.A., Karsanina M.V., Going submicron in the precise analysis of soil structure: A FIB-SEM imaging study at nanoscale, Geoderma, 2021, Vol. 383, pp. 114739, DOI: https://doi.org/10.1016/j.geoderma.2020.114739.

55. Gill R., Burke I.C., Milchunas D.G., Lauenroth W.K., Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern Colorado, Ecosyst., 1999, Vol. 2, No. 3, pp. 226–236, DOI: https://doi.org/10.1007/s100219900070.

56. Gregory A.S., Ritz K., McGrath S.P., Quinton J.N., Goulding K.W.T, Jones R.J.A., Harris J.A., Bol R., Wallace P, Pilgrim E.S., Whitmore A.P., A review of the impacts of degradation threats on soil properties in the UK, Soil Use Manag., 2015, Vol. 31, pp. 1–15, DOI: https://doi.org/10.1111/sum.12212.

57. Hassink J., Whitmore A.P., A model of the physical protection of organic matter in soils, Soil Sci. Soc. Am. J., Vol. 61, No. 1, pp. 131–139, DOI: https://doi.org/10.2136/sssaj1997.03615995006100010020x.

58. Helliwell J.R., Sturrock C.J., Miller A.J., Whalley W.R., Mooney S.J., The role of plant species and soil condition in the structural development of the rhizosphere, Plant Cell Environ., 2019, Vol. 42, No. 6, pp. 1974–1986, DOI: https://doi.org/10.1111/pce.13529.

59. Holátko J., Brtnický M., Kučerík J., Kotianová M., Elbl J., Kintl A., Kynický J., Benada O., Datta R., Jansa J., Glomalin – Truths, myths, and the future of this elusive soil glycoprotein, Soil Biology and Biochemistry, 2021, Vol. 153, pp. 108116, DOI: https://doi.org/10.1016/j.soilbio.2020.108116.

60. Holthusen D., Batistão A.C., Reichert J.M., Amplitude sweep tests to comprehensively characterize soil micromechanics: brittle and elastic interparticle bonds and their interference with major soil aggregation factors organic matter and water content, Rheol. Acta., 2020, Vol. 59, No. 8, pp. 545– 563, DOI: https://doi.org/10.1007/s00397-020-01219-3.

61. Horn R., Holthusen D., Dörner J., Mordhorst A., Fleige H., Scaledependent soil strengthening processes – What do we need to know and where to head for a sustainable environment? Soil Tillage Res., 2019, Vol. 195, pp. 104388, DOI: https://doi.org/10.1016/j.still.2019.104388.

62. Horn R., Taubner H., Wuttke M., Baumgartl T., Soil physical properties related to soil structure, Soil Tillage Res., 1994, Vol. 30, No. 2–4, pp. 187– 216, DOI: https://doi.org/10.1016/0167-1987(94)90005-1.

63. Jagadamma S., Steinweg J.M., Mayes M.A., Wang G., Post W.M., Decomposition of added and native organic carbon from physically separated fractions of diverse soils, Biol. Fetil. Soils., 2014, Vol. 50, pp. 613–621, DOI: https://doi.org/10.1007/s00374-013-0879-2.

64. Jarvis N., Coucheney E., Lewan E., Klöffel T., Meurer K. H. Keller T., Larsbo M., Interactions between soil structure dynamics, hydrological processes, and organic matter cycling: A new soil‐ crop model, Eur. J. Soil Sci., 2024, Vol. 75, No. 2, e13455, DOI: https://doi.org/10.1111/ejss.13455.

65. Jastrow J.D., Amonette J.E., Bailey V.L., Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration, Clim. Change, 2007, Vol. 80, No. 1, pp. 5–23, DOI: https://doi.org/10.1007/s10584-006-9178-3.

66. Jha A., Bonetti S., Smith A.P., Souza R., Calabrese S., Linking soil structure, hydraulic properties, and organic carbon dynamics: A holistic framework to study the impact of climate change and land management, J. Geophys. Res. Biogeosci., 2023, Vol. 128, No. 7, e2023JG007389, DOI: https://doi.org/10.1029/2023JG007389.

67. Jin K., Shen J., Ashton R.W., Dodd I.C., Parry M.A.J., Whalley W.R., How do roots elongate in a structured soil? J. Exp. Bot., 2013, Vol. 64, No. 15, pp. 4761–4777, DOI: https://doi.org/10.1093/jxb/ert286.

68. Jin K., White P.J., Whalley W.R., Shen J., Shi L., Shaping an optimal soil by root – soil interaction, Trends Plant Sci., 2017, Vol. 22, No 10, pp. 823– 829.

69. Jones D.L., Nguyen C., Finlay R.D., Carbon flow in the rhizosphere: carbon trading at the soil – root interface, Plant and soil, 2009, Vol. 321, No. 1–2, pp. 5–33, DOI: https://doi.org/10.1007/s11104-009-9925-0.

70. Just C., Poeplau C., Don A., van Wesemael B., Kögel-Knabner I., Wiesmeier M., A simple approach to isolate slow and fast cycling organic carbon fractions in central European soils – Importance of dispersion method, Front. Soil Sci., 2021, Vol. 1, 692583, DOI: https://doi.org/10.3389/fsoil.2021.692583.

71. Killham K., Amato M., Ladd J.N., Effect of substrate location in soil and soil pore-water regime on carbon turnover, Soil Biol. Biochem, 1993, Vol. 25, No. 1, pp. 57–62, DOI: https://doi.org/10.1016/0038-0717(93)90241-34.

72. Kim H.M., Anderson S.H., Motavalli P.P., Gantzer C.J., Compaction effects on soil macropore geometry and related parameters for an arable field, Geoderma, 2010, Vol. 160, No. 2, pp. 244–251, DOI: https://doi.org/10.1016/j.geoderma.2010.09.030.

73. Koebernick N., Daly K.R., Keyes S.D., Bengough A.G., Brown L.K., Cooper L.J., George T.S., Hallett P.D., Naveed M., Raffan A., Roose T., Imaging microstructure of the barley rhizosphere: particle packing and root hair influences, New Phytol., 2019, Vol. 221, No. 4, pp. 1878–1889, DOI: https://doi.org/10.1111/nph.15516.

74. Kramer C., Gleixner G., Variable use of plant-and soil-derived carbon by microorganisms in agricultural soils, Soil Biol. Biochem., 2006, Vol. 38, No. 11, pp. 3267–3278, DOI: https://doi.org/10.1016/j.soilbio.2006.04.006.

75. Kravchenko A., Otten W., Garnier P., Pot V., Baveye P.C., Soil aggregates as biogeochemical reactors: Not a way forward in the research on soil– atmosphere exchange of greenhouse gases, Glob. Change Biol., 2019, Vol. 25, No. 7, pp. 2205–2208, DOI: https://doi.org/10.1111/gcb.14640.

76. Kravchenko A.N., Guber A.K., Soil pores and their contributions to soil carbon processes, Geoderma, 2017, Vol. 287, pp. 31–39, DOI: https://doi.org/10.1016/j.geoderma.2016.06.027.

77. Kravchenko A.N., Negassa W.C., Guber A.K., Rivers M.L., Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics, Sci. Rep., 2015, Vol. 5, No. 1, pp. 16261, DOI: https://doi.org/10.1038/srep16261.

78. Kravchenko A.N., Guber A.K., Razavi B.S., Koestel J., Quigley M.Y., Robertson G.P., Kuzyakov Y., Microbial spatial footprint as a driver of soil carbon stabilization, Nat. Commun., 2019, Vol. 10, No. 1, pp. 3121, DOI: https://doi.org/10.1038/s41467-019-11057-4.

79. Kravchenko A., Guber A., Gunina A., Dippold M., Kuzyakov, Y., Pore‐ scale view of microbial turnover: Combining 14C imaging, μCT and zymography after adding soluble carbon to soil pores of specific sizes, Eur. J. Soil Sci., 2021, Vol. 72, No. 2, pp. 593–607, DOI: https://doi.org/10.1111/ejss.13001.

80. Krull E.S., Baldock J.A., Skjemstad J.O., Importance of mechanisms and processes of the stabilization of soil organic matter for modelling carbon turnover, Funct. Plant Biol., 2003, Vol. 30, No. 2, pp. 207–222, DOI: https://doi.org/10.1071/FP02085.

81. Kuzyakov Y., Mason-Jones K., Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions, Soil Biology and Biochemistry, 2018, Vol. 127, pp. 305–317, DOI: https://doi.org/10.1016/j.soilbio.2018.09.032.

82. Le Bissonnais Y., Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology, Eur. J. Soil Sci., 1996, Vol. 47, No. 4, pp. 425–437, DOI: https://doi.org/10.1111/j.1365-2389.1996.tb01843.x.

83. Lehmann J., Kleber M., The contentious nature of soil organic matter, Nature, 2015, Vol. 528, No. 7580, pp. 60–68, DOI: https://doi.org/10.1038/nature16069.

84. Lehmann A., Zheng W., Rillig M.C., Soil biota contributions to soil aggregation, Nat. Ecol. Evol., 2017, Vol. 1, No. 12, pp. 1828–1835, DOI: https://doi.org/10.1038/s41559-017-0344-y.

85. Leue M., Gerke H.H., Godow S.C., Droplet infiltration and organic matter composition of intact crack and biopore surfaces from clay‐ illuvial horizons, Journal of Plant Nutrition and Soil Science, 2015, Vol. 178, No. 2, pp. 250– 260, DOI: https://doi.org/10.1002/jpln.201400209.

86. Lilley J.M., Kirkegaard J.A., Benefits of increased soil exploration by wheat roots, Field Crops Res., 2011, Vol. 122, No. 2, pp. 118–130, DOI: https://doi.org/10.1016/j.fcr.2011.03.010.

87. Lin H., Three principles of soil change and pedogenesis in time and space, Soil Science Society of America Journal, 2011, Vol. 75, No. 6, pp. 2049–2070, DOI: https://doi.org/10.2136/sssaj2011.0130.

88. Lombard N., Prestat E., van Elsas J.D., Simonet P., Soil-specific limitations for access and analysis of soil microbial communities by metagenomics, FEMS microbiology ecology, 2011, Vol. 78, No. 1, pp. 31–49, DOI: https://doi.org/10.1111/j.1574-6941.2011.01140.x.

89. Lucas M., Schlüter S., Vogel H.J., Vetterlein D., Roots compact the surrounding soil depending on the structures they encounter, Sci. Rep., 2019, Vol. 9, No. 1, pp. 16236, DOI: https://doi.org/10.1038/s41598-019-52665-w.

90. Lützow M., Kögel‐ Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, Eur. J. Soil Sci., 2006, Vol. 57, No. 4, pp. 426–445, DOI: http://dx.doi.org/10.1111/j.1365-2389.2006.00809.x.

91. Malamoud K., McBratney A.B., Minasny B., Field D.J., Modelling how carbon affects soil structure, Geoderma, 2009, Vol. 149, No. 1–2, pp. 19–26, DOI: https://doi.org/10.1016/j.geoderma.2008.10.018.

92. Manzoni S., Cotrufo F., Mechanisms of soil organic carbon and nitrogen stabilization in mineral associated organic matter – Insights from modelling in phase space, EGUsphere, 2024, pp. 1–35, DOI: https://doi.org/10.5194/egusphere-2024-1092.

93. Materechera S.A., Dexter A.R., Alston A.M., Formation of aggregates by plant roots in homogenized soils, Plant Soil., 1992, Vol. 142, pp. 69–79, DOI: https://doi.org/10.1007/BF00010176.

94. Meurer K.H.E., Chenu C., Coucheney E., Herrmann A.M., Keller T., Kätterer T., Svennson D.N., Jarvis N., Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter, Biogeosciences Discussions, 2020, pp. 1–34, DOI: https://doi.org/10.5194/bg17-5025-2020

95. Mueller C.W., Kölbl A., Hoeschen C., Hillion F., Heister K., Herrmann A.M., Kögel-Knabner I., Submicron scale imaging of soil organic matter dynamics using NanoSIMS–from single particles to intact aggregates, Org. Geochem., 2012, Vol. 42, No. 12, pp. 1476–1488, DOI: https://doi.org/10.1016/j.orggeochem.2011.06.003.

96. Mueller C.W., Baumert V., Carminati A., Germon A., Holz M., KögelKnabner I., Peth S., Schlüter S., Uteau D., Vetterlein D., Teixeira P., Vidal A., From rhizosphere to detritusphere – Soil structure formation driven by plant roots and the interactions with soil biota, Soil Biol. Biochem., 2024, Vol. 193, pp. 109396, DOI: https://doi.org/10.1016/j.soilbio.2024.109396.

97. Nawaz M.F., Bourrie G., Trolard F., Soil compaction impact and modelling. A review, Agron. Sustain. Dev., 2013, Vol. 33, pp. 291–309, DOI: https://doi.org/10.1007/s13593-011-0071-8.

98. Negassa W.C., Guber A., Kravchenk A., Marsh T., Hildebrandt B., Rivers M., Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria, PLoS one, 2015, Vol. 10, No. 4, e0123999, DOI: https://doi.org/10.1371/journal.pone.0123999.

99. Novara A., Armstrong A., Gristina L., Semple K.T., Quinton J., Effects of soil compaction, rain exposure and their interaction on soil carbon dioxide emission, Earth Surf. Process. Landf., 2012, Vol. 37, No. 9, pp. 994–999, DOI: https://doi.org/10.1002/esp.3224.

100. Pankhurst C.E., Pierret A., Hawke B.G., Kirby J.M., Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia, Plant and Soil, 2002, Vol. 238, pp. 11– 20, DOI: https://doi.org/10.1023/A:1014289632453.

101. Philippot L., Raaijmakers J.M., Lemanceau P., Van Der Putten W.H., Going back to the roots: the microbial ecology of the rhizosphere, Nat. Rev. Microbiol., 2013, Vol. 11, No. 11, pp. 789–799, DOI: https://doi.org/10.1038/nrmicro3109.

102. Prieto I., Roumet C., Cardinael R., Dupraz C., Jourdan C., Kim J.H., Maeght J.L., Mao Z., Pierret A., Portillo N., Roupsard O., Thammahacksa C., Stokes A., Root functional parameters along a land‐ use gradient: evidence of a community‐ level economics spectrum, J. Ecol., 2015, Vol. 103, No. 2, pp. 361–373, DOI: https://doi.org/10.1111/1365-2745.12351.

103. Puget P., Chenu C., Balesdent J., Total and young organic matter distributions in aggregates of silty cultivated soils, Eur. J. Soil Sci., 1995, Vol. 46, No. 3, pp. 449–459, DOI: https://doi.org/10.1111/j.1365-2389.1995.tb01341.x.

104. Quigley M.Y., Kravchenko A.N., Inputs of root-derived carbon into soil and its losses are associated with pore-size distributions, Geoderma, 2022, Vol. 410, pp. 115667, DOI: https://doi.org/10.1016/j.geoderma.2021.115667.

105. Rab M.A., Haling R.E., Aarons S.R., Hannah M., Young I.M., Gibson D., Evaluation of X-ray computed tomography for quantifying macroporosity of loamy pasture soils, Geoderma, 2014, Vol. 213, pp. 460–470, DOI: https://doi.org/10.1016/j.geoderma.2013.08.037.

106. Ranjard L., Richaume A., Quantitative and qualitative microscale distribution of bacteria in soil, Research in microbiology, 2001, Vol. 152, No. 8, pp. 707–716, DOI: https://doi.org/10.1016/S0923-2508(01)01251-7.

107. Rabot E., Wiesmeier M., Schlüter S., Vogel H.J., Soil structure as an indicator of soil functions: A review, Geoderma, 2018, Vol. 314, pp. 122–137, DOI: https://doi.org/10.1016/j.geoderma.2017.11.009.

108. Regelink I.C., Stoof C.R., Rousseva S., Weng L., Lair G.J., Kram P., Nikolaidis N.P., Kercheva M., Banwart S., Comans R.N., Linkages between aggregate formation, porosity and soil chemical properties, Geoderma, 2015, Vol. 247, pp. 24–37, DOI: https://doi.org/10.1016/j.geoderma.2015.01.022.

109. Reid J.B., Goss M.J., Interactions between soil drying due to plant water use and decrease in aggregate stability caused by maize roots, J. Soil Sci., 1982, Vol. 33, No. 1, pp. 47–53, DOI: https://doi.org/10.1111/j.1365-2389.1982.tb01746.x.

110. Richard G., Cousin I., Sillon J.F., Bruand A., Guérif J., Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties, Eur. J. Soil Sci., 2001, Vol. 52, No. 1, pp. 49–58, DOI: https://doi.org/10.1046/j.1365-2389.2001.00357.x.

111. Rillig M.C., Mummey D.L., Mycorrhizas and soil structure, New Phytol., 2006, Vol. 171, No. 1, pp. 41–53, DOI: https://doi.org/10.1111/j.1469-8137.2006.01750.x.

112. Rousk J., Bååth E., Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique, Soil Biol. Biochem., 2007, Vol. 39, No. 8, pp. 2173–2177, DOI: https://doi.org/10.1016/j.soilbio.2007.03.023.

113. Ruamps L.S., Nunan N., Pouteau V., Leloup J., Raynaud X., Roy V., Chenu C., Regulation of soil organic C mineralisation at the pore scale, FEMS Microbiol. Ecol., 2013, Vol. 86, No. 1, pp. 26–35, DOI: https://doi.org/10.1111/1574-6941.12078.

114. Sasse J., Martinoia E., Northen T., Feed your friends: do plant exudates shape the root microbiome? Trends in Plant Science, 2018, Vol. 23, No. 1, pp. 25–41, DOI: https://doi.org/10.1016/j.tplants.2017.09.003.

115. Schutter M., Dick R., Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates, Soil Biology and Biochemistry, 2001, Vol. 33, No. 11, pp. 1481–1491, DOI: https://doi.org/10.1016/S0038-0717(01)00057-8.

116. Schweizer S.A., Perspectives from the Fritz‐ Scheffer Awardee 2021: Soil organic matter storage and functions determined by patchy and piled‐ up arrangements at the microscale, J. Plant Nutr. Soil Sci., 2022, Vol. 185, No. 6, pp. 694–706, DOI: https://doi.org/10.1002/jpln.202200217.

117. Segoli M., De Gryze S., Dou F., Lee J., Post W.M., Denef K., Six J., AggModel: A soil organic matter model with measurable pools for use in incubation studies, Ecol. Modell., 2013, Vol. 263, pp. 1–9, DOI: https://doi.org/10.1016/j.ecolmodel.2013.04.010.

118. Sher Y., Baker N.R., Herman D., Fossum C., Hale L., Zhang X., Nuccio E., Saha M., Zhou J., Pett-Ridge J., Firestone M., Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential, Soil Biol. Biochem., 2020, Vol. 43, pp. 107742, DOI: https://doi.org/10.1016/j.soilbio.2020.107742.

119. Smith A.P., Marín-Spiotta E., De Graaff M.A., Balser T.C., Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change, Soil Biology and Biochemistry, 2014, Vol. 77, pp. 292–303, DOI: https://doi.org/10.1016/j.soilbio.2014.05.030.

120. Six J., Guggenberger G., Paustian K., Haumaier L., Elliott E.T., Zech W., Sources and composition of soil organic matter fractions between and within soil aggregates, Eur. J. Soil Sci., 2001, Vol. 52, No. 4, pp. 607–618, DOI: https://doi.org/10.1046/j.1365-2389.2001.00406.x.

121. Six J., Bossuyt H., Degryze S., Denef K., A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics, Soil Tillage Res., 2004, Vol. 79, No. 1, pp. 7–31, DOI: https://doi.org/10.1016/j.still.2004.03.008.

122. Six J., Elliott E.T., Paustian K., Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture, Soil Biol. Biochem., 2000, Vol. 32, No. 14, pp. 2099–2103, DOI: https://doi.org/10.1016/S0038-0717(00)00179-6.

123. Spohn M., Carminati A., Kuzyakov Y., Soil zymography – a novel in situ method for mapping distribution of enzyme activity in soil, Soil Biol. Biochem., 2013, Vol. 58, pp. 275–280, DOI: https://doi.org/10.1016/j.soilbio.2012.12.004.

124. Spohn M., Kuzyakov Y., Distribution of microbial-and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – coupling soil zymography with 14C imaging, Soil Biol. Biochem., 2013, Vol. 67, pp. 106–113, DOI: https://doi.org/10.1016/j.soilbio.2013.08.015.

125. Stamati F.E., Nikolaidis Ν.P., Banwart S., Blum W.E., A coupled carbon, aggregation, and structure turnover (CAST) model for topsoils, Geoderma, 2013, Vol. 211, pp. 51–64, DOI: https://doi.org/10.1016/j.geoderma.2013.06.014.

126. Stewart J.B., Moran C.J., Wood J.T., Macropore sheath: quantification of plant root and soil macropore association, Plant and Soil, 1999, Vol. 211, No. 1, pp. 59–67, DOI: https://doi.org/10.1023/A:1004405422847.

127. Strickland M.S., Rousk J., Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications, Soil Biol. Biochem., 2010, Vol. 42, No. 9, pp. 1385–1395, DOI: https://doi.org/10.1016/j.soilbio.2010.05.007.

128. Strong D.T., Sale P.W.G., Helyar K.R., The influence of the soil matrix on nitrogen mineralisation and nitrification. II. The pore system as a framework for mapping the organisation of the soil matrix, Soil Research., 1998, Vol. 36, No. 5, pp. 855–872, DOI: https://doi.org/10.1071/S97103.

129. Strong D.T., Wever H.D., Merckx R., Recous S., Spatial location of carbon decomposition in the soil pore system, Eur. J. Soil Sci., 2004, Vol. 55, No. 4, pp. 739–750, DOI: https://doi.org/10.1111/j.1365-2389.2004.00639.x.

130. Tan X., Chang S.X., Soil compaction and forest litter amendment affect carbon and net nitrogen mineralization in a boreal forest soil, Soil Till. Res., 2007, Vol. 93, No. 1, pp. 77–86, DOI: https://doi.org/10.1016/j.still.2006.03.017.

131. Tan X., Chang S.X., Kabzems R., Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study, For. Ecol. Manag., 2005, Vol. 217, No. 2–3, pp. 158–170, DOI: https://doi.org/10.1016/j.foreco.2005.05.061.

132. Tisdall J.M., Oades J.M., Organic matter and water‐ stable aggregates in soils, J. Soil Sci., 1982, Vol. 33, No. 2, pp. 141–163, DOI: https://doi.org/10.1111/j.1365-2389.1982.tb01755.x.

133. Tomescu A.M.F., Megaphylls, microphylls and the evolution of leaf development, Trends Plant Sci., 2009, Vol. 14, No. 1, pp. 5–12, DOI: https://doi.org/10.1016/j.tplants.2008.

134. Totsche K.U., Amelung W., Gerzabek M.H., Guggenberger G., Klumpp E., Knief C., Lehndorff E., Mikutta R., Peth S., Prechtel A., Ray N., Kogel-Knabner I., Microaggregates in soils, J. Plant Nutr. Soil Sci., 2018, Vol. 181, No. 1, pp. 104–136, DOI: https://doi.org/10.1002/jpln.201600451.

135. Treves D.S., Xia B., Zhou J., Tiedje J.M., A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil, Microbial Ecology, 2003, Vol. 45, pp. 20–28, DOI: https://doi.org/10.1007/s00248-002-1044-x.

136. Ugawa S., Inagaki Y., Karibu F., Tateno R., Effects of soil compaction by a forestry machine and slash dispersal on soil N mineralization in Cryptomeria japonica plantations under high precipitation, New For., 2020, Vol. 51, pp. 887–907, DOI: https://doi.org/10.1007/s11056-019-09768-z.

137. Valentine T.A., Hallett P.D., Binnie K., Young M.W., Squire G.R., Hawes C., Bengough A.G., Soil strength and macropore volume limit root elongation rates in many UK agricultural soils, Ann. Bot., 2012, Vol. 110, No. 2, pp. 259–270, DOI: https://doi.org/10.1093/aob/mcs118.

138. Verchot L.V., Dutaur L., Shepherd K.D., Albrecht A., Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils, Geoderma, 2011, Vol. 161, No. 3–4, pp. 182–193, DOI: http://dx.doi.org/10.1016/j.geoderma.2010.12.017.

139. Visser S., Role of the soil invertebrates in determining the composition of soil microbial communities, 1985.

140. Vogel H.J., Balseiro‐ Romero M., Kravchenko A., Otten W., Pot V., Schlüter S., Weller U., Baveye P.C., A holistic perspective on soil architecture is needed as a key to soil functions, Eur. J. Soil Sci., 2022, Vol. 73, No. 1, pp. e13152, DOI: https://doi.org/10.1111/ejss.13152.

141. Wang B., Brewer P.E., Shugart H.H., Lerdau M.T., Allison S.D., Soil aggregates as biogeochemical reactors and implications for soil–atmosphere exchange of greenhouse gases – A concept, Global Change Biol., 2019, Vol. 25, No. 2, pp. 373–385, DOI: https://doi.org/10.1111/gcb.14515.

142. Waring B.G., Averill C., Hawkes C.V., Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta‐ analysis and theoretical models, Ecol. Let., 2013, Vol. 16, No. 7, pp. 887–894, DOI: https://doi.org/10.1111/ele.12125.

143. White R.G., Kirkegaard J.A., The distribution and abundance of wheat roots in a dense, structured subsoil – implications for water uptake, Plant Cell Environ., 2010, Vol. 33, No. 2, pp. 133–148, DOI: https://doi.org/10.1111/j.1365-3040.2009.02059.x.

144. Yudina A., Kuzyakov Y., Dual nature of soil structure: The unity of aggregates and pores, Geoderma, 2023, Vol. 434, pp. 116478, DOI: https://doi.org/10.1016/j.geoderma.2023.116478.

145. Yudina A., Kuzyakov Y., Saving the face of soil aggregates, Global Change Biol., 2019, Vol. 25, No. 11, DOI: https://doi.org/10.1111/gcb.14779.

146. Yudina A., Ovchinnikova O., Cheptsov V., Fomin D., Localization of C cycle enzymes in arable and forest phaeozems within levels of soil microstructure, Microorganisms, 2023, Vol. 11, No. 5, pp. 1343, DOI: https://doi.org/10.3390/microorganisms11051343.

147. Young I.M., Crawford J.W., Rappoldt C., New methods and models for characterising structural heterogeneity of soil, Soil and Tillage Research, 2001, Vol. 61, No. 1–2, pp. 33–45, DOI: https://doi.org/10.1016/S0167-1987(01)00188-X.

148. Young I.M., Ritz K., Can there be a contemporary ecological dimension to soil biology without a habitat? Soil Biology and Biochemistry, 1998, Vol. 30, No. 10–11, pp. 1229–1232, DOI: https://doi.org/10.1016/S0038-0717(97)00263-0.

149. Zech S., Schweizer S.A., Bucka F.B., Ray N., Kögel‐ Knabner I., Prechtel A., Explicit spatial modeling at the pore scale unravels the interplay of soil organic carbon storage and structure dynamics, Global Change Biol., 2022, Vol. 28, No. 15, pp. 4589–4604, DOI: https://doi.org/10.1111/gcb.16230.

150. Zhang Y., King A.E., Hamilton E., Cotrufo M.F., Representing cropping systems with the MEMS 2 ecosystem model, Agron. J., 2024, Vol. 116, No. 5, pp. 2328–2345, DOI: https://doi.org/10.1002/agj2.21611.

151. Zhang Y., King A.E., Hamilton E., Cotrufo M.F., Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model, Biogeosciences, 2021, Vol. 18, No. 10, pp. 3147– 3171, DOI: https://doi.org/10.5194/bg-18-3147-2021.

152. Zhou J., Xia B.C., Treves D.S., Wu L.Y., Marsh T.L., O’Neill R.V., Palumbo A.V., Tiedje J.M., Spatial and resource factors influencing high microbial diversity in soil, Applied and environmental microbiology, 2002, Vol. 68, No. 1, pp. 326–334, DOI: https://doi.org/10.1128/AEM.68.1.326-334.2002.


Review

For citations:


Yudina A.V., Klyueva V.V., Timofeeva M.V., Semenov M.V., Bardashov D.R., Kochneva M.A., Mitichkin D.E., Fomin D.S., Romanenko K.A. Physical mechanisms of carbon stabilization in soils (a review). Dokuchaev Soil Bulletin. 2025;(124):309-366. (In Russ.) https://doi.org/10.19047/0136-1694-2025-124-309-366

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0136-1694 (Print)
ISSN 2312-4202 (Online)