TAXONOMIC STRUCTURE OF PROKARYOTIC COMMUNITIES IN SOILS OF DIFFERENT BIOCLIMATIC ZONES
https://doi.org/10.19047/0136-1694-2018-95-125-153
Abstract
About the Authors
I. A. TikhonovichRussian Federation
All-Russia Research Institute for Agricultural Microbiology,
Russia, 196608, Sankt-Peterburg, Pushkin-8, shosse Podbel'skogo, 3
T. I. Chernov
Russian Federation
V.V. Dokuchaev Soil Science Institute, Russia,119017, Moscow, Pyzhevskii, 7
A. D. Zhelezova
Russian Federation
V.V. Dokuchaev Soil Science Institute, Russia,119017, Moscow, Pyzhevskii, 7
A. K. Tkhakakhova
Russian Federation
V.V. Dokuchaev Soil Science Institute, Russia,119017, Moscow, Pyzhevskii, 7
E. E. Andronov
Russian Federation
All-Russia Research Institute for Agricultural Microbiology,
Russia, 196608, Sankt-Peterburg, Pushkin-8, shosse Podbel'skogo, 3
V.V. Dokuchaev Soil Science Institute, Russia,119017, Moscow, Pyzhevskii, 7
O. V. Kutovaya
Russian Federation
V.V. Dokuchaev Soil Science Institute, Russia,119017, Moscow, Pyzhevskii, 7
References
1. Andronov E.E., Pinaev A.G., Pershina E.V., Chizhevskaya E.P. Solation of DNA from soil samples (guidelines), St. Petersburg, 2011, 27 p. (in Russian)
2. Abrukova V.V., Akul'shina E.A., Afanas'eva T.V., Belan B.C. et al. Soil and agronomical characteristics of Chashnikovo research station, Moscow, 1986, 95 p. (in Russian)
3. Vorob'eva L.A. Soil chemical analysis, Moscow, 1998, 272 p. (in Russian)
4. Dobrovol'skaja T.G. The structure of soil bacterial communities, Moscow, 2002, 282 p. (in Russian)
5. Zhelezova A.D., Kutovaya O.V., Dmitrenko V.N., Tkhakakhova A.K., Khokhlov S.F. Estimation of DNA quantity in different groups of microorgan-isms within genetic horizons of the dark-gray soil, Dokuchaev Soil Bulletin, 2015, V.78, pp. 87–98.
6. Zvjagincev D.G., Zenova G.M. Ecology of actinomycetes, Moscow, 2001, 256 p. (in Russian)
7. Classification and diagnostics of soil Russia. Smolensk, 2004, 342 p. (in Russian)
8. Classification and diagnostics of USSR soils, Moscow, 1977, 223 p. (in Russian)
9. Manucharova N.A. Molecular biological aspects of research in ecology and microbiology, Moscow, 2010. 47 p. (in Russian)
10. Marfenina O.E. Anthropogenic ecology of soil fungi, Moscow, 2005, 195 p. (in Russian)
11. Rode A.A., Pol'skij M.N. Soils of Dzhanybek research station, their morphology, physical and chemical contents and properties, Trudy Pochvennogo instituta im. V.V. Dokuchaeva, Moscow, 1961, V. 56, pp. 3–214.
12. Pankratov T.A. Acidobacteria in microbial communities of the bog and tundra lichens, Microbiology, 2012, V. 81, № 1, P. 51–58
13. Sapanov M.K. Synchronism of changes in the levels of the Caspian Sea and groundwater in the Northern Caspian in the second half of the 20th century, Izvestija RAN. Serija geograficheskaja, 2007, № 5, pp. 82–87 (in Russian)
14. Khitrov N.B., Ponizovskij A.A. Guidelines for laboratory methods for estimation of salt and ion contents in neutral and alkaline mineral waters, Moscow, 1990, 236 p. (in Russian)
15. Cheverdin J.I. Changes of soil properties in the East-South of Central Chernozem Region under anthropogenic influence, Kamennaja Step', 2013, 335 p. (in Russian)
16. Chernov T.I., Tkhakakhova A.K., Kutovaya O.V. Assessment of diversity indices for the characterization of the soil prokaryotic community by meta-genomic analysis, Eurasian Soil Science, 2015, V. 48, No. 4, pp. 410–415.
17. Chirak E.L., Pershina E.V., Dol'nik A.S., Kutovaya O.V. et al. Taxonomic structure of microbial association in different soils investigated by high through-put sequencing of 16S rRNA gene libraries, Sel'skohozjajstvennaja biologija, 2013, No. 3, pp. 100–109 (in Russian)
18. Basak B.B., Biswas D.R. Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop, Biology and Fertility of Soils, 2010, V. 46, No. 6, pp. 641–648.
19. Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A. et al. Examining the global distribution of dominant archaeal populations in soil, The ISME Journal, 2011, V. 5, pp. 908–917
20. Blume E., Bischoff M., Reichert J.M., Moorman T. et al. Surface and sub-surface microbial biomass, community structure and metabolic activity as a function of soil depth and season, Appl. Soil Ecol., 2002, 20, pp.171–181.
21. Bru D., Ramette A., Saby N. P., Dequiedt S. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale, The ISME Journal, 2011, V. 5, pp. 532–542.
22. Caporaso J.G., Kuczynski J., Stombaugh J. et al. QIIME allows analysis of high throughput community sequencing data, Nature methods, 2010, V. 7, No. 5, pp. 335–336
23. Daniel R. The metagenomics of soil, Nature Reviews Microbiology, 2005, V. 3, pp. 470–478.
24. Dedysh S.N., Sinninghe Damsté J.S., Acidobacteria, eLS, 2018. pp. 1–10. doi:10.1002/9780470015902.a0027685
25. Drenovsky R.E., Vo D., Graham K.J., Scow K.M. Soil water content and organic carbon availability are major determinants of soil microbial community composition, Microbial Ecology, 2004, V. 48, pp. 424–430.
26. Eilers K.G., Debenport S., Anderson S., Fierer N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem., 2012, V. 50, pp. 58–65.
27. Fierer N., Jackson J.A., Vilgalys R., Jackson R.B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays, Applied and Environmental Microbiology, 2005, V. 71, pp. 4117–4120.
28. Fierer N., Schimela J.P., Holden P.A. Variations in microbial community composition through two soil depth profiles, Soil Biol. Biochem., 2003, pp.167–176.
29. Jones R.T., Robeson M.S., Lauber C.L., Hamady M. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses, The ISME Journal, 2009., V. 4, pp. 442–453.
30. Lauber C.L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale, Applied and Environmental Microbiology. 2009. V. 75. No. 15. pp. 5111–5120.
31. Leininger S., Urich T., Schloter M., Schwark L. Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature. 2006. V. 442. pp. 806–809.
32. Semenov M.V., Chernov T.I., Tkhakakhova A.K., Zhelezova A.D. et al. Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century, Appl. Soil Ecol. 2018. No. 127. pp. 8–18.
33. Torsvik V., Øvreås L. Microbial diversity and function in soil: from genes to ecosystems, Current Opinion in Microbiology. 2002. V. 5. No. 3. pp. 240–245.
34. Wardle D.A. Communities and Ecosystems: Linking the Aboveground and Belowground Components / Princeton, New Jersey, USA: Princeton University Press, 2002. 408 p.
35. Zehnder G.W., Murphy J.F., Sikora E.J., Kloepper J.W. Application of Rhizobacteria for induced resistance, European Journal of Plant Pathology, 2001, V. 107, No. 1, pp. 39–50.
36. IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. 2014. 181 p.
Review
For citations:
Tikhonovich I.A., Chernov T.I., Zhelezova A.D., Tkhakakhova A.K., Andronov E.E., Kutovaya O.V. TAXONOMIC STRUCTURE OF PROKARYOTIC COMMUNITIES IN SOILS OF DIFFERENT BIOCLIMATIC ZONES. Dokuchaev Soil Bulletin. 2018;(95):125-153. (In Russ.) https://doi.org/10.19047/0136-1694-2018-95-125-153